نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست، دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل، ایران

2 گروه مهندسی محیط زیست، دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

3 گروه مهندسی نقشه برداری، دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

سابقه و هدف:
وجود منبع های نفتی در دریاها عملیات اکتشاف، استخراج و حمل و نقل مواد نفتی در آنها سبب بهوجود آمدن لکه های هیدروکربنی بر سطح دریاها میشود و در نتیجه کاهش سطح کیفیت این آبها را در پی دارد. نشت مواد نفتی به دریاها عوارض محیط زیستی جبران ناپذیری دارد و اکوسیستم های ساحلی و دریایی را مختل می کند در نتیجه شناسایی مکان و زمان وقوع حوادث نفتی و تشخیص ابعاد و بزرگی آلودگی ناشی از آنها برای نظارت و حفظ سلامت محیط زیست از اهمیت زیادی برخوردار است و امروزه به کمک داده های سنجش از دور، استفاده از ماهواره های اپتیکی و راداری آسان و ممکن میشود. در این مطالعه، به منظور ارتقاء قابلیت تشخیص نواحی آلودگی نفتی، با استفاده همزمان ماهواره های اپتیکی 8-Landsat ،2-Sentinel و راداری 1-Sentinel به دلیل قدرت تفکیک مکانی باال و دوره بازبینی نزدیک به هم، آلودگی نفتی دریای خزر در منطقه ی تأسیسات نفتی آذربایجان مورد مطالعه قرار گرفت.
مواد و روشها:
در این مطالعه، بررسی آلودگی نفتی ناشی از تأسیسات نفتی Rocks Oil در دو ماه آوریل و ژوئن سال 2017 به وسیله تصاویر ماهوارهای انجام شد. پس از شناسایی لکه های آلودگی بر سطح آب در اطراف این تأسیسات در تصاویر راداری برای اطمینان از لکه های شناسایی شده ناشی از نشت نفت و بارزسازی آلودگی نفتی از تصاویر اپتیکی از روابط نسبت باندی استفاده شد. سپس، عملیات استخراج عوارض تصویرها با استفاده از روش نسبت باندی انجام گرفت.
نتایج و بحث:
مساحت به دست آمده از سطوح آلودگی نفتی در ماه آوریل سال 2017 افزایش سطح لکه ی نفتی را طی 12 روز نشان داد که با توجه به درصد پوشش کالس نفت و کالس مخلوط آب و نفت در نتایج به دست آمده از سطوح، گویای افزایش پخش و گسترش لکه ی نفتی با جریانات دریایی و ادامه ی نشت نفت از منبع تولید آن است. همچنین بررسی تصاویر اپتیکی 8-Landsat و 2-Sentinel در تاریخ 5 ژوئن 2017 در میزان سطح آلودگی نفتی، نتایج نزدیک به هم را نشان داد.
نتیجه گیری:
نتایج به دست آمده از این تحقیق، نشان داد که روش نسبتهای باندی برای تشخیص سریع نشت نفت مناسب است. به همین جهت، برای بارزسازی جزئیات ناحیه آلودگی، از روش طبقه بندی نسبت باندی تصویر برای استخراج عوارض با کالسهای مشخص استفاده شد. همچنین از نظر محیط زیستی تأسیسات نفتی Rocks Oil آبهای خزری، کشور جمهوری آذربایجان را در شرایط نامطلوبی قرار داده و به دلیل جهت غالب جریانات دریایی در آن ناحیه به سمت سواحل شمال غربی ایران، درصورت عدم پیشگیری از وقوع نشت نفت، آبهای سواحل کشور ما را آلوده ساخته و اکوسیستم دریایی منطقه را تحت تأثیر قرار میدهد. بنابراین باید برای جمع آوری و پاک سازی لکه های نفتی در اطراف این تأسیسات با استفاده از روشهای فیزیکی، شیمیایی و زیستی نسبت به پاکسازی آلودگی های نفتی روی سطح آب اقدام شود.

کلیدواژه‌ها

عنوان مقاله [English]

Detection of oil spill hotspots in the Caspian Sea using remote sensing (case study: Baku oil extraction facility)

نویسندگان [English]

  • ِDariush Yousefi Kebria 1
  • Ghazal Abaskhanian 2
  • ٍٍEbadat Ghanbari parmehr 3

1 Department of Environment Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 Department of Environment Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

3 Department of Geomatics Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

چکیده [English]

Introduction:
Due to the presence of oil resources in the seas, the exploration, extraction, and transportation of petroleum products lead to the formation of hydrocarbon spills on the surface waters, resulting in a decrease in the quality of these waters. Oil leakage into the sea has irreparable environmental consequences and disrupts coastal and offshore ecosystems. As a result, identifying the location and time of oil accidents and recognizing the extent and magnitude of contamination is of great importance for monitoring and protecting the health of the environment and is now facilitated and possible by remote sensing data using optical and radar satellites. In this study, to enhance the detection of oil-contaminated areas in Azerbaijan oil facilities in the Caspian Sea, we simultaneously used the optical satellites LANDSAT8, SENTINEL2, and radar satellite SENTINEL1 because of the high spatial resolution and close period.
Material and methods:
In this study, oil contamination caused by Oil Rocks facilities was investigated by satellite images between April and June 2017. After detecting contamination spots on the surface of the water around the facility in radar images, to ensure that the identified spots were caused by oil spills , detecting oil contamination from optical images using band ratio method. was used Then, the feature extraction method was applied to band ratio images to distinguish their complications.
Results and discussion:
The area of oil spills in April 2017 increased within 12 days and considering the covering percentage of classes of oil and oily water in the results, the increase in the spread of oil spills through currents, and the continuation of leakage from its source was evident. Also, looking at the optical images of Landsat 8 and Sentinel 2 on June 5, 2017 showed the same results in oil contamination areas.
Conclusion:
The results of this study showed that the band rationing method is suitable for quick detection of oil leakage. To identify the details of the area of contamination, the feature extraction method was used to classify the band ratio images to the identified classes. Also, from the environmental point of view, the Oil Rocks settlement put the Caspian seawater in the Republic of Azerbaijan in unfavorable conditions. The northwestern coast of Iran is also exposed to contamination because of current directions in that region. Therefore, actions must be taken to collect and clean up oil spills around this oil facility. In order to do so, oil contamination on the water surface must be removed using existing physical and biological methods.

کلیدواژه‌ها [English]

  • Optical and radar images
  • Caspian Sea
  • Oil spill
  • Band ratio image
  • Feature extraction

Akkartal, A. and Sunar, F., 2008. The usage of radar images in oil spill detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 37, 271-276.

CSNRC, 2011. Caspian Sea State of the Environment. Caspian Environment Program, Interim Secretariat of the Framework Convention for the Protection of the Marine Environment of the Caspian Sea. Available online at: wri.ac.ir/csnrc.

Carnesecchi, F., Byfield, V., Cipollini, P., Corsini, G. and Diani, M., 2008. An optical model for the interpretation of remotely sensed multispectral images of oil spill. Proceedings of Remote Sensing Of The Ocean, Sea Ice, and LargeWater Regions, 15th September, Cardiff, Wales, United Kingdom.

Cococcioni, M., Corucci, L. and Lazzerini, B., 2009. Issues and preliminary results in oil spill detection using optical remotely sensed images. In Proceeding of Oceans -Europe, 11th - 14th May, Germany.

Girard-Ardhuin, F., Mercier, G. and Garello, R., 2003. Oil slick detection by SAR imagery: potential and limitation. Oceans. 1, 164-169.

Howari, F., 2004. Investigation of hydrocarbon pollution in the vicinity of United Arab Emirates coasts using visible and near infrared remote sensing data. Journal of Coastal Research. 20(4), 1089-1095.

Ivanov, A.Y., Dostovalov, M.Y. and Sineva, A.A., 2012. Characterization of oil pollution around the oil rocks production site in the Caspian Sea using spaceborne polarimetric SAR imagery. Izvestiya, Atmospheric and Oceanic Physics. 48(9), 1014-1026.

Kolokoussis, P. and Karathanassi, V., 2018. Oil spill detection and mapping using sentinel 2 imagery. Journal of Marine Science and Engineering. 6(1), 1-12.

Lee, M.S., Park, K.A., Lee, H.R., Park, J.J., Kang, C.K. and Lee, M., 2016. Detection and dispersion of oil spills from satellite optical images in a coastal bay. International Geoscience and Remote Sensing Symposium (IGARSS), 10th - 15th July, Beijing, China.

Mityagina, M. and Lavrova, O., 2016. Satellite survey of inner seas: oil pollution in the Black and Caspian seas. Remote Sensing. 8(10), 1-24.

Majidi Nezhad, M., Groppi, D., Laneve, G., Marzialetti, V. and Piras, G., 2018. Oil spill detection analyzing “Sentinel 2” satellite images: a Persian Gulf case study. In Proceeding of the 3rd World Congress on Civil, Structural and Environmental Engineering, 8th - 10th April, Budapest, Hungary.

Pavlakis, P., Sieber, A. and Alexandry, S., 1996. Monitoring oil-spill pollution in the Mediterranean with ERS SAR. European space agency. Earth Observation Quarterly. 52, 8-11.

Raygani, B., Najafi Yasuri, M., Bodagh Jamali, J. and Sarkheil, H., 2019. Detection of oil spill hotspots using time-series MODIS Data (case study: Persian Gulf). Petroleum Research. 29(98-5), 97-106.

Taravat, A. and Del Frate, F., 2012. Development of band ratioing algorithms and neural networks to detection of oil spills using Landsat ETM+ data. EURASIP Journal on Advances in Signal Processing .107, 1-8.

Topouzelis, K., 2008. Oil spill detection by SAR images: dark formation detection, feature extraction and classification algorithms. Sensors. 8(10), 6642-6659.

Topouzelis, K. and Singha, S., 2016. Oil spill detection: past and future trends. ESA Living Planet Symposium, 9th - 13th May, Prague, Czech Republic.

United States Environmental Protection Agency, Office of Emergency and Remedial Response., 1999. Understanding oil spills and oil spill response.