نوع مقاله : مقاله پژوهشی

نویسندگان

گروه محیط زیست انسانی، دانشکده محیط زیست، کرج، ایران

چکیده

سابقه و هدف:
شهر تهران با وسعتی در حدود 750 کیلومتر مربع و جمعیتی بیش از 8 میلیون نفر و در حدود 4 میلیون خودرو در حال تردد با مشکل آلودگی هوا به­ صورت جدی مواجه می ­باشد. بررسی دقیق توزیع فضایی و آلاینده­ هایی از قبیل CO و NO2در کلانشهر تهران به ­منظور شناسایی خطرها، احتمال و ریسک این آلاینده­ ها بسیار دارای اهمیت می­ باشد، با توجه به آن بهره­ گیری از روش­ هـای محاسباتی ریاضی از قبیل روش ارزیابی سطح اطمینان می ­تواند مؤثر باشد. تاکنون تحقیقی در رابطه با محاسبه سطح اطمینان صورت نگرفته است. هدف­ های اصلی این تحقیق بررسی تغییرات غلظت آلایندگی هوا نسبت به عناصر CO و NO2، بررسی شعاع تأثیر ایستگاه‌های ثابت سنجش آلودگی و محاسبه سطح اطمینان با بررسی احتمال آلایندگی هوا و در نهایت تهیه نقشه ریسک آلودگی هوا در منطقه ­های مختلف کلانشهر تهران می­ باشد.
مواد و روش ها:
در این تحقیق داده ­های مربوط بـه آلایندگی هوای تهران در ماه­ های مهر، آبان و آذر سال 1396 در یک مدل ­سازی فضایی بکار گرفته شد و با استفاده از روش زمین آمار و روش کریجینگ شاخص1 داده ­ها تحلیل شده و نقشه­ های توزیـع آلایندگـی غـلظت و همچنین نقشه­ های دو - دویی (صفر و یک) احتمال آلایندگی و ریسک آلودگی در کلانشهر تهران در نرم افزار Arc GISبرای بازه زمانی مربوطه تهیه گردید.
نتایج و بحث:
نقشه­ های حاصل برای سطح اطمینان برای کلانشهر تهران نشان می­ دهد که ایستگاه­های پارک قائم، پارک رازی و شهرداری منطقه 16 بیشترین میزان ریسک آلایندگی NO2 و ایستگاه­ های دانشگاه شهید بهشتی، پاسداران، دانشگاه علم و صنعت و شادآباد دارای کمترین میزان ریسک آلایندگی NO2 می­ باشند و همچنین ایستگاه­ های مربوط به شهرداری منطقه 11، شهرداری منطقه 16، شهرداری منطقه 15، فرمانداری شهرری، دانشگاه شریف، میدان فتح، پارک سلامت و پارک رازی بیشترین میزان ریسک آلایندگی CO و ایستگاه­ های اقدسیه، دانشگاه شهید بهشتی، شهرداری منطقه 2، پارک رز، دانشگاه علم و صنعت، گلبرگ، شاد آباد و مسعودیه کمترین میزان ریسک آلایندگیCO  را به خود اختصاص داده ­اند.
نتیجه­ گیری:
کریجینگ شاخص روش مفیـدی برای ارزیابی ریسک آلـودگی از طـریق فراهم کـردن نـقشه احتمال می­ باشد. نقشه­ های ریسک تولید شده در این تحقیق برای مشخص نمودن منطقه­ های مستعد به آلودگی، CO و NO2 ابزار سودمندی می ­باشند. نتایج این تحقیق می ­تواند با شناسایی درست میزان آلایندگی هوا در یک توزیع فضایی مناسب، در تصمیم ­گیری ­های مدیریتی شهری نقش موثری را ایفاء نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Reliability assessment in spatial modeling for identification of air pollution (NO2 & CO) probability in Tehran metropolis

نویسندگان [English]

  • Hamid Sarkheil
  • Maryam Fakhari
  • Behzad Rayegani
  • Javad Bodagh Jamali

Department of Human Environment, College of Environment, Karaj, Iran

چکیده [English]

 Introduction:
Tehran metropolis, with an area of 750 km2, a population of more than 8 million people, and about 4 million vehicles is associated with the problem of air pollution. A thorough study of the spatial distribution of pollutants such as CO and NO2 in Tehran is significant for identifying the risks, probabilities, and risks of these contaminants. Therefore, mathematical and computational methods such as the confidence level method can be useful. The main goals of this research were to investigate the changes in air pollution levels in terms of CO and NO2 concentration, study the radius of impacts of fixed pollution stations, and calculate the level of reliability by investigating the probability of air pollution and the map of the risk of air pollution in different parts of the urban area of Tehran.
Material and methods:
In this study, Tehran's air pollution data in October, November, and December 2017 was used in spatial modeling. Using geostatistics and indicator kriging methods, data were analyzed and maps of the distribution of pollution concentration, and also two-dual maps (0 and 1) of the probability of pollution and risk of pollution in Tehran's for the study period were produced by ArcGIS Software.
Results and discussion:
The resulting maps showed the highest NO2 emissions areas (Ghaem Park, Razi Park, and the municipality of district 16) and areas with the least risk of NO2 pollution (Shahid Beheshti University, Pasdaran, Science, and Technology University, and Shad Abad). Moreover, the highest CO emission areas were the municipality of districts 11, 15, and 16, Ray station, Sharif University, Fatah Square, Health Park, and Razi Park). Aghdasyeh station, Shahid Beheshti University, municipality of district 2, Rose Park, Science and Technology University, Golbargh, Shad Abad, and Masoudieh had the lowest CO emissions.
Conclusion:
The indicator kriging was a useful method for assessing the risk of contamination by providing a possibility map. The hazardous maps produced in this study were useful tools for identifying areas with CO and NO2 contaminations. The results of this study can play an effective role in urban management decisions by correctly identifying the amount of air pollution in an appropriate spatial distribution.

کلیدواژه‌ها [English]

  • Spatial distribution
  • Tehran metropolis
  • Indicator kriging
  • Geostatistics
  • Reliability

Kindap, T., Unal, A., Chen, S.H., Odmen, M.T. and Karaca, M., 2006. Long-range aerosol transport from EUROPE to Istanbul. Atmospheric Environment. 40, 3536-3547.

Sarkheil, H., Tavakoli, J., Rezvani, S., 2016. Inherent Safety Process Assessment in the Initial Phase of the Chemical Design Process: The Case of Acetic Acid Production Process, Journal of Safety Promotion and Injury Prevention, 4 (1), 207-212

Tehran Air Quality Control Company, 2018, www. airtehran. ir

Goovaerts, P., 1999. Geostatiscal in soil science: state of-the-art and perspectives. Geoderma. 89, 1-45.

Collins, F.C. and Bolstad, P.V., 1996. A Comparison of Spatial Interpolation Techniques in Temperature Estimation. Proceedings of the 3rd International Conference/Workshop on Integrating GIS and Environmental Modeling, National Center for Geographic Information and Analysis, Santa Barbara, Santa Fe, NM, Santa Barbara. C.A.

Bagheri Shirvan, B., Shad, R. and Ghaemi, M., 2015. Assessment spatial accuracy of algorithms Ordinary Kriging, Simple Kriging, and Universal Kriging in order to estimate soil moisture.

Karimi, H.A., 2009. Handbook of research on geoinformatics. Hershey: Information Science Reference. xxxiv, 481.

Journel, A.G. and Huijbregts, C.J., 1978. Mining Geostatistic. Academic Press, New York.

Burgess, T.M. and Webster, R., 1980. Optimal interpolation and isarithmic mapping of soil properties. I: the variogram and punctual kriging. Journal of Soil Science, 31, 315–331.

Di Piazza, A., Conti, F.L., Noto, L.V., Viola, F. and La Loggia, G., 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. International Journal of Applied Earth Observation and Geo Information. 13, 396-408.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

Journel, A.G., 1983. Non-Parametric estimation of spatial distribution. Mathematical Geology. 15(3), 445-468.

Goovaerts, P., 2011. Geostatistical modeling of uncertainty in soil science. Geoderma. 103, 3-26.

Dammer, K.H., Schweigert, T. and Wittmann, C., 1999. Probability maps for risk assessment in patchy weed control. Precision Agriculture. 1, 185-198.

Delbari, M., 2007. Estimation and stochastic simulation of soil properties for case studies in Lower Austria and Sistan plain, southeast of Iran. Ph.D. Thesis. University of natural resources and applied life science, Vienna, Austria.

Van Meirvenne, M. and Gooverts, P., 2001. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma. 102, 75-100.

Mohammadi, J., van Meirvenne, M. and Goovaerts, P., 1997. Mapping cadmium concentration and the risk of exceeding a local sanitation threshold using indicator geostatistics, In Soares, A. and Gomez-Hernandez, J. and Froidevaux, R. (eds.), geoENV I –geostatistical for environmental applications. Kluwer, Dordrecht. pp. 327–337.

Adhikary, P.P., Chandrasekharan, H., Chakraborty, D. and Kamble, K., 2010. Assessment of groundwater pollution in West Dehli India using a geostatistical approach. Environmental Monitoring and Assessment. 167, 599–615.

Kakaie, R., Ardejani F., Doulati, Sarkheil, H., 2009. Fractal Method and Orthonormal Trend Surface Analysis Application for Separation of Gechemical Anomalies from background in1: 100000 Sorian Sheet. Amirkabir. V. 20 (20), 1-7.

Sarkheil, H., Rahbari, S., 2019. Fractal geometry analysis of chemical structure of natural starch modification as a green biopolymeric product, Arabian Journal of Chemistry 12 (8), 2430-2438.

Sarkheil, H., Hassani, H., Alinia, F., Enayati, A., Nikandish, A., 2012. Fracture analysis in Tabnak hydrocarbon field of Iran by using fractal geometry and multi-fractal analysis, Arabian Journal of Geosciences, Germany 5 (4), 579-586

Adhikary, P.P., Dash, Ch.J., Bej, R. and Chandrasekharan, H., 2011. Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environmental Monitoring and Assessment. 176 (1-4), 663-76.

Sarkheil, H., Hassani, H., Alinya, F., Enayati, A.A., Motamedi, H., 2009. A Forcasting System of Reservior Fractures Based on Artificial Neural Network and Borehole Images Information-Exemplified By Reservior Fractures in Tabnak Feild, Fars, Iran, International Multidisciplinary Scientific GeoConference: SGEM: 1: 563-570.

Sarkheil, H., Hassani, H., Alinia, F., 2013. Fractures distribution modeling using fractal and multi-fractal–neural network analysis in Tabnak hydrocarbon field, Fars, Iran, Arabian Journal of Geosciences, 6 (3), 945-956.

Sarkheil, H., Rahbari, S., 2016. Development of case historical logical air quality indices via fuzzy mathematics (Mamdani and Takagi–Sugeno systems), a case study for Shahre Rey Town. Environ Earth Sci 75, 1319. https://doi.org/10.1007/s12665-016-6131-2

Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N., 2011. Using ArcGIS Geostatistical Analyst; Redlands ESRI: Redlands, CA, USA.

Isaaks, E.H. and Srivastava, R.M., 1989. An introduction to applied geostatistics. Oxford University Press, New York.

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

Jensen, J.R., 2005. Introductory digital image processing: a remote sensing perspective. 3rd ed. Prentice Hall Inc., USA, p. 526.

Deutsch, C.V. and Journel, A.G., 1998. GSLIB: Geostatistical Software Library and User’s Guide. Second Edition. Oxford University Press, New York.

Goovaerts, P., 2009. AUTO-IK: a 2D indicator kriging program for the automated nonparametric modeling of local uncertainty in earth sciences. Computer & Geosciences. 01 Jun 2009, 35(6):1255-1270

Rayegani, B., Barati, S., Goshtasb, H., Sarkheil, H., Ramezani, J., 2019. An effective approach to selecting the appropriate pan-sharpening method in digital change detection of natural ecosystems, Ecological Informatics, V. 53, 100984. https://doi.org/10.1016/j.ecoinf.2019.100984

Rayegani, B., Barati, S., Goshtasb, H., Gachpaz, S., Ramezani, J., Sarkheil, H., 2020. Sand and dust storm sources identification: A remote sensing approach, Ecological Indicators. V. 112, 106099. https://doi.org/10.1016/j.ecolind.2020.106099.