نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه احیا مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران

2 سازمان تحقیقات، آموزش و ترویج کشاورزی، پژوهشکده حفاظت خاک و آبخیزداری، تهران، ایران

چکیده

سابقه و هدف:
پدیده گرد و غبار در شرایط امروزی ایران به­ عنوان یک خطر جدی مشکل ­های عمده­ای را برای محیط زیست و سلامت مردم به­ وجود آورده است. تحقیق­ ها نشان می­ دهد که بسامد و شدت این طوفان­ ها در سال­ های اخیر افزایش یافته است. افزون بر این مدل­ های عددی هواشناسی نیز به تنهایی قادر به ردیابی و آشکارسازی طوفان نیستند و این امر ضرورت استفاده از روش­ های بارزسازی گرد و غبار بر اساس داده سنجش از دور را نمایان می ­سازد. هدف این تحقیق، تجزیه و تحلیل داده­ های آماری و شناسایی روزهای همراه با گرد و غبار، منشا گرد و غبار وارد شده به منطقه اصفهان و شناسایی مسیر حرکت آن می ­باشد.
مواد و روش­ ها:
برای بررسی آماری گرد و غبار، از داده­ های گرد و غبار به ­صورت روزانه در 8 ساعت دیده ­بانی ساعتی در قالب کدهای ویژه ­ای در دوره 4 ساله (2013 - 2010)، از ایستگاه منتخب در منطقه مطالعاتی با دوره آماری مناسب، از سازمان هواشناسی گرفته شد که با استفاده از روش­ های آماری پردازش و تحلیل شدند. بمنظور پهنه ­بندی فراوانی گرد و غبار در سطح استان، با استفاده از روش IDW مبادرت به میان­ یابی و تبدیل داده­ های نقطه­ ای به پهنه­ ای گردید و نقشه پهنه­ بندی پراکندگی برای دوره آماری 2013 - 2010 در محیط نرم افزار GIS ترسیم شد. بمنظور بارزسازی پدیده گرد و غبار، پس از تصحیح هندسی تصاویر، مقادیر رادیانس تصاویر با استفاده از عکس تابع پلانک به دمای درخشندگی تبدیل شد. تصحیحات و پردازش تصاویر در محیط ENVI صورت پذیرفت. با توجه به تاثیر عمده ­ای که ذرات گرد و غبار بر روی میزان بازتابش و دمای درخشندگی باندهای 31 و 32 سنجنده مادیس می‌گذارند، از تفاضل دمای درخشندگی دو باند بیان شده بمنظور بارزسازی توده ­های گرد و غبار استفاده شد. از آنجایی که آلبیدوی1 رخداد گرد و غبار در طول موج 12 میکرومتر بیشتر از طول موج 11 میکرومتر است بنابراین اختلاف دمای درخشندگی طول موج­ های 11 و 12 میکرومتر مربوط به رخداد گرد و غبار منفی است. هم­چنین بمنظور جلوگیری از آشکارسازی نواحی ابری آستانه دمایی 290 درجه کلوین مربوط به محدوده طیفی 12 میکرومتر اعمال شد. بمنظور ردیابی مسیر حرکت ذرات گرد و غبار مدل های اسپلیت2 به­ کار گرفته شد.
نتایج و بحث:
نتایج تحقیق نشان می­ دهد که در مجموع 1467 روز پدیده گرد و غبار بدون در نظر گرفتن شدت وقوع این پدیده برای ایستگاه­ های منتخب طی دوره آماری 2013 - 2010 گزارش شده که ایستگاه نایین با 634 روز بیشترین و ایستگاه کاشان با 50 روز کمترین فراوانی گرد و غبار را دارا بودند. هم­چنین نتایج گویای آن است که ماه­ های می، ژوئن و آوریل بیشترین و ماه­ های دسامبر و ژانویه کمترین درصد رخداد را دارا بودند. بررسی فراوانی ماهانه گرد و غبار نشان داد که 44.57% از کل رخداد گرد و غبار در ماه آوریل، می و ژوئن و 32.4% در ماه دسامبر و ژانویه به ­وقوع پیوسته است. با این توصیف می­ توان گفت که تغییرات فراوانی ماهانه گرد و غبار در منطقه بیشتر از هر چیز ازشرایط اقلیم همدید حاکم در منطقه در ماه ­های سال تبعیت می ­کند. نتایج حاصل از پهنه­ بندی در طی دوره آماری نشان داد که بخش ­های جنوب شرقی استان بویژه ایستگاه نائین دارای بیشترین وقوع گرد و غبار است. کاربرد ویژگی­ های مربوط به دمای درخشندگی و اعمال آستانه­ های دمایی بمنظور تفکیک گرد و غبار از عوارض زمینی بویژه در منطقه­ های با پس زمینه روشن که دارای بازتابندگی مشابه هستند و نیز تفکیک گرد و غبار از ابرها، در بارزسازی گرد و غبار یاری­رسان بوده است. نتایج حاصل از ردیابی نشان می ­دهد که مسیر اصلی برای انتقال گرد و غبار به منطقه مورد مطالعه جنوب غربی – شمال شرقی است.
نتیجه ­گیری:
به ­طور کلی، با توجه به تصاویر ماهواره ­ای در روز شروع و روز اوج گرد و غبار، منبع­ های اصلی گرد و غبارهای وارد منطقه مورد مطالعه شامل بیابان­ های شمال صحرای عربستان می­ باشند. براساس نتایج به ­دست آمده از پردازش تصاویر ماهواره ­ای شمال عربستان به عنوان منشا و خروجی مدل های اسپلیت مسیر جنوب غربی - شمال شرقی، مسیر اصلی ورود گرد و غبار برای اصفهان محسوب می­ شوند.

کلیدواژه‌ها

عنوان مقاله [English]

Detecting and routing of dust event using remote sensing and numerical modeling in Isfahan Province

نویسندگان [English]

  • Mehdii Jafari 1
  • Gholamreza Zehtabian 1
  • Hasan Ahmadi 1
  • Tayebeh Mesbahzadeh 1
  • Ali Akbar Norouzi 2

1 Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Tehtan, Iran

2 Agricultural Extension and Research Organization, Institute of Soil and Water Conservation, Tehran, Iran

چکیده [English]

Introduction:
The phenomenon of dust in Iran is a serious risk that caused major problems for the environment and human health. Research has shown that the frequency and severity of these storms have increased in recent years. In addition, numerical weather models alone are not capable of storm detection, which requires the use of dust detection methods based on data remote sensing. The purpose of this research was to analyze the statistical data and identify the days with dust, the source of dust entering the Isfahan area, and identify the route of its movement.
Material and methods:
For data analysis of dust, data from dust collecting data was collected from the selected station in the study area with a suitable statistical period from the meteorological organization on a daily basis for 8 hours, in the form of special codes for the period of 2010 to 2013, which were processed and analyzed using statistical methods. In order to zoning the dust abundance in the province, the IDW method was used to interpolate and transform point-to-area data. The dispersion zonation map for the 2010-2013 period was mapped using the GIS software. In order to visualize the dust phenomenon, after the geometric correction of the images, the radian values of the images were converted to brightness temperature using the Planck function. Corrections and processing of images were done in ENVI software. Due to the large influence of dust particles on the reflection and brightness temperature of the 31 and 32 bands of the material, the difference between the two bands' brightness was used to represent the dust mass. Also, to prevent the detection of cloud areas, the threshold of 290 K was applied to the 12-micron range. HYSPLIT Lagrangian model was used to trace the dust particles' path.
Results and disscussion:
The results of this study indicated that a total of 1467 days of dust phenomena were reported for selected stations from 2010 to 2013, in which the Naein station was the largest with 634 days and the Kashan station had the least frequency of dust with 50 days. The results also indicated the greatest frequency percentage occurred in May, June and April and the lowest frequency percentages in December and January. The frequency of monthly dust data showed that 44.57% of the total dust incidence occurred in April, May and June and 32.4% in December and January. Accordingly, it can be concluded that monthly dust changes occur frequently in the region consistent with the regional climate during all months of the year. The zoning results showed that during the study period, the southeast of the province, especially Naien station, had the highest incidence of dust. The application of brightness temperature and temperature threshold in order to separate the dust from the terrain, especially in areas with backlight, was helpful in the detection of dust. The results of the tracking showed that the main route for the transfer of dust to the studied area was southwest-northeast.
Conclusion:
In general, according to satellite images on the first and the peak day of dust, the main sources of dust in the region were northern Arabian deserts. Based on the results obtained from image processing and the output of the model, the northern part of Saudi Arabia and the southwest-northeast route were the origin and main route of dust entering Isfahan.

کلیدواژه‌ها [English]

  • Dust
  • Brightness temperature
  • MODIS
  • Esfahan
  • HYSPLIT

Azizi, Gh., Shamsipour. Miri, M. and Safar Rad, T., 2012. Synoptic and remote sensing analysis of dust events in southwestern Iran. Natural Hazared. 64, 1625- 1638.

Babaie Fini, A., Safar Rad, T. and Karimi, M., 2017. Analysis and identification of patterns of coexistence of dust storms in western Iran. Geography and Environmental Hazards. 17, 105-119. (In Persian with English abstract).

Beroghani, M., Pourhashemi, S., Asadi Zanganeh, M.A. and Moradi, H.R., 2017. Dust source identification in the Middle East by using Remote Sensing. Journal of Natural Enviornmental Hazards. 6(11), 101-118. (In Persian with English abstract).

Iranmanesh, F., Arabkhedri, M. and Akram, M., 2006. Investigating dust harvesting regions and their emission characteristics in storms in Sistan region using satellite imagery. Processing of 1th National Conference on wind erosion, Yazd, Iran.

Hakimzadeh, M.A. and Esfandiari., M., 2016. Climatic Droughts Zoning Using Inverse Distance Weighted Method. Geographical Researches. 31 (2), 180-189. (In Persian with English abstract).

Jalali, N. and Davoudi, M.H, 2008. Inspecting The Origins and Causes of The Dust Storms in The Southwest and West Parts of Iran and the Regions Affected. Internal Reports of Soil Conservation and Watershed Mangement Research Institue, Iran.

Karimi, N., Moridnejad, A., Golian, S., Samani, J.M.V., Karimi, D. and Javadi, S., 2012. Comparison of dust source identification techniques over land in the Middle East redion Using MODIS Data. Journal of. Remote Sensing. 38(5), 586-599.

Khosravi, M., 2008. Spatial analysis of dust storms caused by 120-day winds of Sistan using remote sensing data (period 2001-2008). Proceedings of the National Conference on Environmental Health, Zanjan, Iran.

Khosravi, M., 2010. Spatial Analysis of Hurricane Dust Storm Pollution in the Middle East Using NAAPS Model (Case: Sistan Iran), Proceedings of the 4th International Congress of Geographers of the Islamic World (ICIWG2010), Zahedan, Iran.

Kianian, A., Mobarghaei Dian, N. and Hashemi, H., 2016. Zoning the Soil Affected by Wastewater Irrigation with Using IDW Method (Case Study, South of the Rey City). Environmental Researches, 7(14), 81-90. (In Persian with English abstract).

Modarres., R. and Silva, V.P.R., 2007. Rainfall Trends in Arid and Semi-Arid Regoins of Iran. Journal of Arid Environment. 70(2), 344-355.

Mohammadi Mouradiyan, J. and Hosseinzadeh, S.R., 2016. Satellite monitoring and the analysis of dust phenomena in Mashhad's metropolitan area during the statistical period of 2013-2009. Geography and Environmental Hazards. 4(14), 35-57. (In persian with English abstract).

Pahlavanravi, A., Miri, A, Ahmadi, A. and Ekhtesasi. M.R., 2012. The impacts of different of dust storms in hot and dry climate, a case study in sistan region. Desert. 17, 15-25.

Qu, J. J., Hao, X., Kafatos, M. and Wang, L., 2006. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geoscience and Remote Sensing Letters. 3(4),484-486.

Rashki, A., Kaskaoutis, D.G., Francois, P., Kosmopoulos, P.G. and Legrand, M., 2015. Dust storm dynamics over sistan region, Iran: seasonality, transport characteristics and affected areas. Aeolian Research. 16, 35- 48.

Rasouli, E.A., Sarisaraf, B. and Mohammadi, GH.J., 2010. Drought climate analysis in the west of the country in the last 55 years using nonparametric methods. National Geographic Quarterly. 9, 15-28. (In Persian with English abstract)

Rezazadeh, M., Irannejad, P. and Shao, Y., 2013. Climatology of the Middle East events. Aeolian Research. 10, 103- 109.

Shariari, A.R. and Mohammadi, M., 2015. Trend Analysis the Number of Dusty Days in The Sistan and Baluchistan Province (IRAN) Using Non-Parametric Statistics. Journal of Water and Soil Conservation. 22(4), 253-260. (In Persian with English abstract).

Shao, Y., Wyrwoll, K.H., Chappell, A., Huang, J., Lin, Z., McTainsh, G.H., Mikami, M., Tanaka, T.Y., Wangh, X. and Yoon, S., 2012. Dust cycle: An emerging core theme in Earth system science. Aeolian Research. 2, 181–204.

Wang, Y., Stein, A., Draxler, R., Rosa, D. and Zhang, X., 2011.Global sand and dust storms in: observation and HYSPLIT model verification. Atmospheric Environment. 45, 259-273.

Zangeneh, S., 2014. Applied meteorology of dust storms in Iran. Journal of applied meteorology. 1(1), 1-12.

Zhao, C., Liu, X., Ruby Leung, L. and Hagos, S., 2011. Radiactive impact of mineral dust on monsoon precipitation variability over West Africa. Atmospheric Chemistry and Physics. 11, 1879-1893.