نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران

2 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران

3 گروه جنگلداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس نور، مازندران، ایران

4 گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه منابع طبیعی گرگان، گرگان، ایران

5 گروه مهندسی صنایع ، دانشکده مهندسی صنایع و مدیریت، دانشگاه علوم و فنون مازندران، مازندران، ایران

چکیده

سابقه و هدف:
در دهه‌های اخیر، استفاده از روش‌های برنامه‌ریزی ریاضی با قابلیت بهینه‌سازی فرآیندهای تصمیم‌ در شرایط محدودیت منابع و اهداف متضاد رواج یافته‌اند. بر استفاده از این روش‌ها در تخصیص زمین به گزینه‌های کاربری‌ در مناطق جنگلی، برنامه‌ریزی طرح‌های کشاورزی-جنگل‌داری و در ارزیابی گزینه‌های سرمایه‌گذاری گردشگری تاکید شده است. این پژوهش بر آن است تا با استفاده از روش برنامه‌ریزی خطی چند‌هدفی سطح بهینه سرمایه‌گذاری و تخصیص زمین برای توسعه فعالیت‌های گردشگری در محدوده پارک جنگلی زارع به وسعت 73 هکتار در استان مازندران، طبق سه هدف افزایش سود، کاهش فرسایش و افزایش میزان اشتغال را مورد ارزیابی قرار دهد. 
مواد و روش‌ها:
اطلاعات مورد نیاز، از نقشه‌های موجود، سازمان‌های مربوط و تکمیل پرسش‌نامه‌ها از 120 گردشگر گردآوری شد. داده‌های فرسایش بر اساس معیارهای فرسایش در روش FAO طبق نظر کارشناسان از مقیاس 1 تا 100 لحاظ شد. محدودیت‌های مرتبط با ویژگی‌های فیزیولوژیکی با ایجاد 6 حوزه همگن برای تخصیص پنج کاربری سایت ورزشی، پارک کودکان، خورگشت، جنگل‌گردی و منطقه حفاظت‌شده اعمال شد. سایر اطلاعات به‌عنوان ورودی توابع هدف و محدودیت‌ها به مدل وارد شدند. با حل مدل در نرم‌افزار Lingo 11 ماتریس بازده (pay off matrix) از بهینه‌سازی جداگانه اهداف، به‌منظور ارزیابی تضاد میان آنها تشکیل شد. سپس بر اساس روش وزنی مجموعه‌ای از جواب‌های کارا (Efficient set) به دست آمد و در نهایت با روش برنامه‌ریزی توافقی (compromise programming) بر اساس ترجیح‌های تصمیم‌گیران و تنظیم وزن اهداف بهترین جواب انتخاب شد.
نتایج و بحث:
بر اساس نتایج، با هدف حداکثر کردن سود، درآمد سالانه حدودا برابر 6/5 میلیارد ریال و تعداد شغل 239 نفر و فاکتور شدت فرسایش 5/28 واحد تخمین زده می‌شود. با بهینه‌سازی جداگانه هدف حداقل کردن فرسایش، مقیاس شدت فرسایش به سبب تغییر سطح و حوزه تخصیص‌‌یافته به هر کاربری به 14 کاهش ‌یافت. در این حالت کاهشی به میزان  1/3 میلیارد ریال در سودآوری و 19 نفر در اشتغال قابل مشاهده است. هنگامی که هدف حداکثر سازی میزان اشتغال است، درآمد سالانه تا 4/3 میلیارد ریال، از میزان بهینه خود فاصله می‎گیرد. با بهینه‌سازی همزمان سه هدف، تبادل میان اهداف در میان مجموعه جواب‌های کارا مشاهده شد، به نوعی که تغییر در سطح بهینگی هر هدف بر میزان تحقق سایر اهداف تاثیر گذاشته است. از میان این مجموعه، الگوهای بهینه سرمایه‌گذاری با انجام روش برنامه‌ریزی توافقی با لحاظ کردن ترکیب‌های مختلف وزنی از دیدگاه سه گروه مدیران پارک، مسئولان گردشگری و متخصصان محیط‌زیست به دست آمد. بر اساس این نتایج، تغییر وزن اهداف به‌طور چشمگیری موجب تغییر در میزان مساحت و مکان تخصیص یافته به هر کاربری و سطح سود‌آوری شد. در حالت افزایش وزن هدف سود‌آوری نسبت به سایر اهداف، بر اساس ترجیح‌های فعلی مدیران پارک، میزان سود سالیانه به برآورد اقتصادی سالیانه موجود پارک که معادل 6/4 میلیارد ریال در مطالعات جامع آن پیش‌بینی شده است، منطبق می‌شود. همچنین مکان کاربری‌ها به نقاط مورد تقاضای گردشگران، که در پرسش‌نامه‌ها ارزیابی شد، تا حد زیادی مطابق است. با برقراری تعادل در اوزان اهداف، بر اساس ترجیح‌های مسئولان گردشگری، اگرچه میزان درآمد از میزان تخمینی در مطالعات جامع پارک، کمتر می‌شود، اما سایر اهداف به سطح بهینه خود نزدیکتر می‌شوند. در نهایت با اعمال ترجیح‌های متخصصان محیط زیست درصد تخصیص‌یافته به هر کاربری به نفع کاربری‌های موافق‌تر با طبیعت مانند جنگل‌گردی و حفاظت تغییر می‌کند. 
نتیجه‌گیری:
به‌طور کلی از آنجاکه در مدیریت منابع طبیعی با اهداف متعدد و اغلب متضاد مواجه هستیم، روش‌های بهینه‌سازی چند‌هدفی در تلفیق با روش‌های برنامه‌ریزی توافقی با قابلیت برقراری تبادل میان ترجیح‌های مدیران و ذی‌نفعان می‌توانند، به‌عنوان ابزاری کارآمد در تسهیل فرآیند سیاست‌گذاری و تصمیم‌گیری مورد استفاده قرار گیرند.

کلیدواژه‌ها

عنوان مقاله [English]

Mathematical balancing of capabilities in Zara forest park for allocating space and capital to tourism development

نویسندگان [English]

  • Zoha Jafari 1
  • Alireza Ildromi 2
  • Seyed Mohsen Hosseini 3
  • Abdolrassoul Salmanmahiy 4
  • javad Rezaeain Zeidi 5

1 Department of Environment, Faculty of Natural Resources and the Environment, Malayer University, Malayer, Iran

2 Department of Environment, Faculty of Rangeland and Watershed Management, Malayer University, Malayer, Iran

3 Department of Forestry, Faculty of Natural Resources and Marine Science, Tarbiat Modares Noor, Mazandaran, Iran

4 Department of Environment, Faculty of Fisheries and Environment, University of Natural Resources, Gorgan, Iran

5 Department of Industrial Engineering, Faculty of Engineering and Management, University of Science and Technology, Mazandaran, Iran

چکیده [English]

Introduction:
In recent decades, mathematical planning methods have been widely applied for optimization of decision-making processes under resource constraint conditions (Filip, 2017). The application of these methods has been emphasized in studies such as the allocation of land to various types of utilization in forest areas (Diaz & Romero, 2002), planning agricultural-forestry plans (de Sousa Xavier, 2015) and assessment of tourism development investment options (Carrillo et al., 2017). The present study applied a multi-objective programming method to optimize the level of investment and land allocation for the development of various types of tourism activities, considering three goals of increasing profit, decreasing erosion rate and increasing employment in Zara Park with an area of 73 hectares in Mazandaran Province.
Materials and methods:
The required information was collected from area maps, relevant organizations and completed questionnaires from 120 visitors.  The scale of erosion for each activity in a special area was determined with the use of affecting criteria from the FAO erosion assessment method and expert opinions for each activity in a special site. Limitations related to the physiological features of the area were considered through the creation of six homogeneous areas for the allocation of sports site, children's park, picnic, forest seeing and conservation. Other information was entered into the model as input data of objective function and constraint. By solving the model in Lingo11 mathematical programming software, a pay-off matrix was first created from separate optimization of goals, in order to assess the degree of conflict between them (Romero et al., 1987). Then, with the use of the weighting method, a series of efficient solutions were obtained. Finally, using the compromise programming method and creating a balance between the goals, the best answer among them was chosen. Agreed solutions were determined based on the preference of the decision makers in the weight of the goals. 
Results and discussion:
According to the results, on the condition of maximizing profits, annual revenue was estimated as 5.6 billion rails, the number of employees is 239 and the erosion rate was approximately 28. With a separate optimization minimizing erosion, the erosion was expected to decrease by 14 units, due to the modification in the area and the state of site assigned to each activity. In this case, a significant reduction of 3.1 billion rails in annual revenue and 19 people in employment can be envisaged. By maximizing the employment rate individually, the annual income was reduced to 3.4 billion. By simultaneously optimizing three goals in a multi-objective optimization approach, an efficient set of solutions was obtained in which the exchange between the goals could be observed. According to the results the change in the level of optimization of an objective affects the extent to which the other goals are achieved. From this set, optimal investment patterns were obtained with the use of a compromise programming method taking into consideration a different combination of objective weighting from the perspective of the three groups of park managers, tourism organizations and environmentalists. Based on these results, changing the weight of the goals significantly changed the amount of area and location allocated to each activity and the level of profitability. In the state of increasing the weight of the goal Profit, based on the preferences of park managers, the annual revenue will become nearer to the park estimation which is equal to 4.6 billion rails per year according to the comprehensive park studies and the sites allocated to each activity is approximately similar to the site expected by tourist’s point of view, as evaluated in the questionnaires. On an equal weighting, based on the preferences of the tourism authorities, although the level of income is lower than the estimated revenue, the other goals in this condition can come closer to their optimal level; ultimately, by considering environmentalist’s preferences, the percentage allocated to each land use changes in favour of the activities which are more compatible with the natural heritage, such as conservation and forest seeing. 
Conclusion:
We face various and often conflicting goals in managing tourism resources, so multi-objective optimization methods integrated with compromise programming approaches which provide the possibility of exchange between the various preferences of managers and stakeholders can be used as an effective tool in facilitating the decision-making process. 

کلیدواژه‌ها [English]

  • Resource allocation
  • Decision-maker preferences
  • Multi-objective planning
  • Compromise planning

Aerts, J., Eisinger, E., Heuvelink, G. and Stewart, T., 2003. Using Linear Integer Programming for Multi-Site Land- Use Allocation. Geographical Analysis, Vol. 35, No. 2, 148-169.The Ohio State University (in Persian with English abstract).

Beyer. L.H., Dujardin. Y., Watts. E.M. and Possingham, P.h., 2016. Solving conservation problems with integer linear programming. Ecological modeling. 328, 14-22.

Badiei, sh., 2016. Revision of Zareh Sari Forest Park. Sari Municipality.

Ballestero, E. and Romero, C., 1991. A Theorem Connecting Utility Function Optimization and Compromise Programming. Operations Research letter, 10 (7). 421-427.

Carrillo. M., arianela. A., Jesús. M. and Jorge. B., 2017. Multidimensional Analysis of Regional Tourism Sustainability in Spain. Ecological Economics. 140.89–98.

Chen, C., Lin, H., Ko, T., Cheng, H., Wright, J. and Chang, Y., 2015. Spatial resource allocation modeling for marine protected areas design: The case of Kaomei Coastal wetland. Ocean & Coastal Management. 110, 46-56.

Chen, k. 2011. Combining linear and nonlinear model in forecasting tourism demand. Expert Systems with Applications 38 (2011) 10368–10376.

Cohon, J.L., Church, L. R. 1979. Generating Multi objective Trade Offs: An Algorithm for Bicriterion Problems. Water Resources Research, 15(5): 1001-1010.

De Sousa Xavier, A.M., Freitas, M. and Fragoso, R., 2015. Management of Mediterranean forests. A compromise programming approach considering different stakeholders and different objectives. Forest Policy and Economics, http://dx.doi.org/10.1016/j.forpol. 2015.03.012.

Dokht saphi, a., memariani, a. And amani, m., 2004. Multi objective forest planning using the mathematical model. Iranian Journal of Research and Development. 63, 23-34. (in Persian with English abstract)

Diaz-Balteiro, L. and Romero, C., 2002. Forest management optimization models when carbon captured is considered: A goal programming approach. Forest Ecology & Management, 593, 1-1

Filippi, C., Mansini. R. and Stevanato. E., 2017. Mixed integer linear programming models for optimal crop selection Computers and Operations Research. 81: 26–39.

Fallahi, A. and ahmadian, M., 2013. Optimization of Crop Pattern with Emphasis on Water Resources Restrictions Case Study: Sydan-Farooq plain in the city of Marvdasht. Agricultural Economics Research. Vol 5 (2) 91-114. (In Persian with English abstract).

Francisco, S.R. and Ali, M., 2006. Resource allocation tradeoffs in manilaʼs peri-urban vegetable production systems: An application of multi objective programming. Agriculture Systems. 87: 147-168.

Higgins, A., Archer, A. and Hajkowicz. 2008. A Stochastic Non-linear Programming Model for a Multi-period Water Resource Allocation with Multiple Objectives. Water Resource Management. 22:1445–1460.

Hwang, C.L. and Masud, A., 1979. Multiple objective decisions making. Methods and applications: A state of the art survey, Lecture Notes in Economics and Mathematical Systems. Vol. 164, Springer-Verlag, Berlin.

Jalili, k., sadeghi, h. and nikkami, D., 2014. Optimization of land use in watersheds in order to minimize soil erosion using linear programming (Case study: Breimond Watershed, Kermanshah Province), Science and Technology of Agriculture and Natural Resources, 10(4): 15-26. (in Persian with English abstract).

Galilvand, h., karami, a., shahnazari, a., shabani, m. 2012. AHP and Geographic Information System (GIS): A Journal of Zare Parish, Mazandaran. Geography and Development. No 29. 107-118. (in Persian with English abstract)

Kumar, P. and Rosenberger, J., Iqbal, G., 2016. Mixed integer linear programming approaches for land use planning that limit urban sprawl, Computers & Industrial Engineering. http://dx.doi.org/10.1016/j.cie. 2016.10.007.

Karagiannis, S., and Apostolou, D., 2010. Regional Tourism Development using Linear Programming and Vector Analysis. Regional Science Inquiry. 2(1). 25-32.

Kracmar, E., and Kooten, G.C.V., 2005. Managing forest and marginal agricultural land for multiple tradeoffs: compromising on economic, carbon and structural diversity objectives. Ecological Modeling. 185: 451-468.

Mishra, B., Nishad. M. K. Singh. S. R. 2014. Fuzzy Multi- fractional programming for land use planning in agricultural production system. Fuzzy Information and Engineering 6, 245-262.

Marinoni, O., Higgins, A., Hajkowicz. S. and Collins, K., 2009. The multiple criteria analysis tool (MCAT): A new software tool to support environmental investment decision making. Environmental Modeling & Software. 24,153-164.

Mehregan, M. 2015. Operational research, Linear programming and its applications. Nashre Daneshgahi. 47th edition. Page: 536.

Mavrotas G. and Diakoulaki D. 2005. “Multi-criteria branch & bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming”, Applied Mathematics and Computation. 171(1) 53-71.

Nikkami, D., M. Elecktorowicz and G.R. Mehuys., 2002. Optimizing the management of soil erosion. Water quality Research. 37(3): 577- 586.

Pileforushha, p., karami, m., talei, m., sharifi, m., 2012. Modeling the required level of agricultural products using multi-objective planning methodology and GIS. Applied Geographical Sciences Thirteenth, No. 30. 191-210.

Pukkala, T. and Phjonen, V., 1990. Use of linear programming in land use planning in the Ethiopian highland. Silva Fennica. 24(2): 235-247.

Roozbahani. R., Schreider. S. and Abbasi. B., 2015. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences Environmental Modeling & Software 64,18-30.

Romero, C. and T. Rehman. 1984. Goal programming and multiple criteria decision-making in farm planning: an expository analysis. Agricultural Economics. 35: 177-190.

Romero, C., F. Amador and A. Barco. 1987. Multiple objectives in agricultural planning: a compromise programming application. Agricultural Economics. 69:78-86.

Romero, C., T. Rehman and J. Domingo. 1988. Compromise risk programming for agricultural resource allocation problem: an illustration. Agricultural Economics. 39: 271-276.

Riedel, C., 2003. Optimizing land use planning for mountainous regions using LP and GIS towards sustainability. Soil Conservation. 34(1): 121-124.

Saboohi, M. Alvanchi, M., 2008. Application of Multi-Purpose Planning and Agree on Agronomic Planning: A Case Study of Khorasan Razavi. Journal of Agricultural Science and Natural Resources Vol. 15, No. 3.

Shakya, K.M. and W.A. Leuchner. 1993. A multiple objective land use planning model for Nepal hills farms. Agricultural systems. 133-149. (In Persian with English abstract).

Turk. E., Celik. H.M., 2014. Impact of planner’s different viewpoints on optimum land- use allocation. European Planning Studies, Vol. 21, No. 12, 1937–1957.

Torkamani, j., abdollahi. M. 2005. Application of Compromise Planning in Rare Resources Management: Case Study of Groundwater Resources in Rafsanjan City. Science and Technology of Agriculture and Natural Resources. 9(3), 43-54. (in Persian with English abstract)

Wills, C.E. and R.D. Perlack., 1980. A comparison of generating techniques and goal programming for public investment, multiple objective decisions making. Agricultural Economics. 61: 66-74.

Yu, P.L. 1973. A class of solution for group decision problems. Management Science, 19:936-946.

Zhang, J. 2016. Weighing and realizing the environmental, economic and social goals of tourism development using an analytic network process-goal programming approach, Journal of Cleaner Production, doi: 10.1016/j.jclepro.2016.03.131.

Zeleny, M. 1973. Compromise Programming. University of South Carolina Press, Columbia, PP: 597.