جذب و واجذب علفکش ها در خاک در شرایط مزرعه و آزمایشگاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه خاک شناسی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

2 گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 گروه آب، دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

سابقه و هدف:
آلودگی ناشی از کاربرد نهاده‌های کشاورزی به‌ویژه علف‌کش‌ها یکی از چالش‌های زیست‌محیطی عصر حاضر است و به‌کارگیری فناوری‌های نوین همچون سم-آبیاری این مشکل را دوچندان کرده است. بنابراین، گزینش راهبردهای بهینه مدیریتی با تکیه بر شناخت سرنوشت سموم در خاک بسیار ضروری است. هدف از این پژوهش، بررسی کمّی رفتار جذب سطحی و رهاسازی علف‌کش‌ها در خاک در شرایط واقعی مزرعه و در آزمایشگاه است.
مواد و روش‌ها:
بدین منظور، علف‌کش متری‌بیوزین به خاک کرت‌های آزمایشی در مزرعه به دو روش سم‌پاشی معمولی (Conventional Spraying: CS) و سم-آبیاری (Herbigation: HRB) و در محیط آزمایشگاه افزوده شد. پس از بررسی رفتار جذب و واجذب علف‌کش به روش‌های پیمانه‌ای و سانتریفیوژ، مدل‌های مختلف جذب تعادلی به داده‌های به دست آمده برازش داده شدند.
نتایج و بحث:
نتایج نشان داد که به دلیل مقدار کم ماده آلی و رس در خاک، به‌طور کلی جذب سطحی علف‌کش در هر سه نوع تیمار ضعیف است و روند کلی آن از مدل فروندلیچ پیروی می‌کند. نتایج نشان داد از آنجایی‌که در هر سه تیمار مکانیسم جذب سطحی علف‌کش از نوع پیوند هیدروژنی ضعیف است، بخش عمده علف‌کش جذب شده پس از چهار مرحله شست‌وشو رهاسازی می‌شود. اما در تیمارهای آزمایشگاهی و سم-آبیاری، مقدار رهاسازی نسبتاً کمتر بوده و پسماند کمی به دلیل پخشیدگی مولکول‌های علف‌کش به درون منافذ بین خاک‌دانه‌ای و به دام افتادن در این منافذ مشاهده می‌شود.
نتیجه‌گیری:
به‌طور کلی نتایج این بررسی نشان داد که مقدار جذب سطحی علف‌کش در تیمارهای آزمایشگاهی و سم-آبیاری به دلیل وجود رطوبت بیشتر در خاک و در نتیجه افزایش مکان‌های آب‌دوست ماده آلی و نیز پخشیدگی مولکول‌های سم به درون منافذ بین خاک‌دانه‌ای، بیشتر از تیمار سم‌پاشی معمولی است، و بنابراین روش کاربرد سم بر رفتار جذب سطحی و رهاسازی آن تاثیرگذار است. بنابراین کاربرد سم به‌صورت سم-آبیاری به منظور کاهش هدررفت و افزایش کارایی آن در مزرعه پیشنهاد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Adsorption and desorption of herbicides in soil under field and laborat conventional spraying (CS) methods, and to laboratory samples. After inspecting the adsorption and desorption behaviour of herbicide by batch and centrifugal methods, diory conditions

نویسندگان [English]

  • Elham Noshadi 1
  • Mehdi Homaee 2
  • Mohammad Mahmoudian Shoushtari 3
1 Soil Science Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
2 Department of Irrigation and Drainage, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
3 Water Department, Faculty of Engeenering, Shahid Chamran University, Ahvaz, Iran
چکیده [English]

Introduction:
Contamination from agricultural inputs, particularly herbicides, is one of the most important environmental challenges and the use of modern technologies such as herbigation has intensified this problem. Thus, employing optimal management strategies based on knowledge of herbicide behaviour and processes in soil is necessary. The objective of this study was to assess quantitatively the herbicide adsorption-desorption behaviour in soil in the laboratory and under real field conditions.
Materials and methods:
Consequently, metribuzin was applied to the experimental plots using the herbigation (HRB) and conventional spraying (CS) methods, and to laboratory samples. After inspecting the adsorption and desorption behaviour of herbicide by batch and centrifugal methods, different models of equilibrium adsorption were fitted to the data.
Results and discussion:
Results indicated that, due to the low amount of organic matter and clay in the soil, herbicide adsorption was generally weak in all three types of treatment and that the overall process followed the Freundlich model. The results further showed that in all three treatments because of the adsorption mechanism’s weak hydrogen bond, a large portion of the adsorbed molecules desorbed after four washing cycles. However, in the laboratory and herbigation treatments, the amount desorbed was relatively less and, due to the diffusion of molecules into inter-aggregate pores, a small hysteresis can be seen.
Conclusion:
In conclusion the results show, the adsorption amount in laboratory and herbigation treatments is greater than conventional spraying treatments due to a higher moisture level in the soil and increased hydrophilic sites on organic matters and diffusion within the inter-aggregate pores. Therefore, the methods of pesticide application affect the adsorption and desorption behaviour of it. So pesticide application by herbigation is suggested in order to reduce losses and increase efficiency in the field.

کلیدواژه‌ها [English]

  • Adsorption
  • Conventional spraying
  • Desorption
  • Herbigation
  1. Asadi Kapourchal, So., Asadi Kapourchal, Sa., Pazira, E. and Homaee, M., 2009. Assessing radish (raphanus sativus L.) potential for phytoremediation of Lead- contaminated soils resulting from air pollution. Soil Plant Environment Journal.. 55(5), 202-206.
  2. Atafar, Z., Mesdaghinia, J., Nouri, M., Homaee, M., Yunesian, M., Ahmadimoghadam, M. and Mahvi, A.H., 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring Assessment. 160, 83-89.
  3. Babaeian, E., Homaee, M. and Rahnemaie, R., 2012. Enhancing phytoextraction of lead contaminated soils by carrot (Daucus carrota) using synthetic and natural chelates. Journal of Water and Soil. 26(3), 607-618. (In Persian with English abstract).
  4. Babaeian, E. and Homaee, M., 2011. Enhancing lead phytoextraction of land cress (Barbara verna) using aminopolycarboxylic acids. Journal of Water and Soil. 24(6), 1142-1150. (In Persian with English abstract).
  5. Benoit, P., Perceval, J., Stenrod, M.,Moni, C., Eklo, O, Barriuso, E. and Sveistrupt, J., 2007. Availability and biodegradation of metribuzin in alluvial soils as affected by temperature and soil properties. Weed Research. 47, 517–526.
  6. Davari, M. and Homaee, M., 2012. A new yield multiplicative model for simultaneous phytoextraction of Ni and Cd from contaminated soils. Journal of Water and Soil. 25(6), 1332-1343. (In Persian with English abstract).
  7. Drori, Y., Aizenshat, Z. and Chefetz, B., 2005. Sorption–desorption behavior in soils irrigated with reclaimed wastewater. Soil Science Society of America Journal. 69, 1703–1710.
  8. ElSayed, E.M. and Prasher, S.O., 2013. Effect of the presence of nonionic surfactant Brij35 on the mobility of metribuzin in soil. Applied Science. 3, 469-489.
  9. Gee, G.W. and Bauder, J.W., 1986. Particle-size analysis.. In: Klute, A (Eds.), Methods of soil analysis. Part 1. Second ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. pp. 383–411.
  10. Goodman, N., 2004. Private pesticide applicator training manual. University of Minnesota Extension Service.
  11. Henriksen, T., Svensmark, B. and Juhler, R.K., 2004. Degradation and sorption of metribuzin and primary metabolites in a sandy soil. Journal of Environmental Quality. 33, 619–627.
  12. Jafarnejadi, A.R., Homaee, M. and Sayyad, Gh.A., 2011. Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination Journal. 20(1), 93-99
  13. Jafarnejadi, A.R., Homaee, M., Sayyad, Gh.A. and Bybordi, M., 2012. Evaluation of main soil properties affecting Cd concentrations in soil and wheat grains on some calcareous soils of Khuzestan Province. Journal of Water and Soil Conservation. 19(2), 149-164. (In Persian with English abstract).
  14. Jafarnejadi, A.R., Sayyad, Gh.A., Homaee, M. and Davamei, A.H., 2013. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation and soil characteristics. Environmental Monitoring Assessment. 185, 4087-4096. (In Persian with English abstract).
  15. Kah, M. and Brown, C.D., 2007. Prediction of the adsorption of ionizable pesticides in soils. Journal of Agricultural and Food Chemistry. 55, 2312–2322.
  16. Khodaverdiloo, H. and Homaee, M., 2008. Modeling Cadmium and Lead phytoextraction from contaminated soils. Polish Journal of Soil Science. 2(2), 149-162.
  17. Khoury, R., Coste C.M. and Kawar N.S., 2006. Degradation of metribuzin in two soil types of Lebanon, Journal of Environmental Science and Health, Part B. 41(6), 795-806.
  18. Koumanov, K.S., Rankova, Z. and Kolev, K., 2009. Herbigation in a Cherry Orchard – Translocation and Persistence of Pendimethalin in the Soil. Environmental Science Technology. 29, 6271–6281.
  19. Lagat, S. C., Lalah, J. O., Kowenje, C. O. and Getenga, Z. M., 2011. Metribuzin mobility in soil column as effected by environmental and physico- chemical parameters in Mumias sugarcane. Journal of Agricultural and Biological Science. 6(3), 27- 33.
  20. Lopez-Pineiro, A., Pena D., Albarran, A., Becerra, D. and Sanchez-Llerena, J., 2013. Sorption, leaching and persistence of metribuzin in Mediterranean soils amended with olive mill waste of different degrees of organic matter maturity. Journal of Environmental Management. 122, 76-84.
  21. Maheswari S.T. and Ramesh A., 2007. Adsorption and degradation of sulfosulfuron in soils. Environmental Monitoring and Assessment. 127(1-3), 97-103.
  22. Majumdar, K. and Singh, N., 2007. Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere. 66, 630–637.
  23. Page, A.L., Miller R.H., and Keeney, D.R., 1982. Methods of Soil Analysis, Part 2—Chemical and Microbiological Properties, Second ed. American Society of Agronomy, Madison, WI,. pp. 181–197.
  24. Pot,V., Benoit, P., LeMenn, M., Eklo, O.M., Sveistrup, T. and Kvarnerc, J., 2011. Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modeling to evaluate the risk of leaching in a sandy loam soil profile. Pest Management Science. 67, 397– 407.
  25. Roy, C., Gaillardon, P. and Montfort, F., 2000. The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties. Pest Management. Science. 56, 795–803.
  26. Singh, N., 2009. Adsorption of herbicides on coal fly ash from aqueous solutions. Journal of Hazardous Materials. 168, 233–237.
  27. Sumner, M.E. and Miller, W.P., 1996. Cation exchange capacity, and exchange coefficients. In: Sparks, D.L. (Eds.), Methods of soil analysis. Part 2: Chemical properties (3rd ed.). ASA, SSSA, CSSA, Madison, WI.
  28. Villaverde, J. Kah, M. and Brown, C.D., 2008. Adsorption and degradation of four acidic pesticides in soils from southern Spain. Pest Management Science. 64, 703–710.
  29. Walkley, A. and Black, I.A., 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science. 63, 251-263.