نوع مقاله : علمی - پژوهشی
نویسنده
عضو هیئت علمی، مرکز تحقیقات پروتئین و دانشکده انرژی و فناوری های نوین، دانشگاه شهید بهشتی
چکیده
امروزه نانوذرات سنتزی گستره وسیعی از ذرات با ویژگیهای منحصربهفرد را دربر میگیرند و کاربردهای زیادی در حوزه نانوتکنولوژی دارند. خواص ویژه نانوذرات و برهمکنش آنها با مولکولهای زیستی توجه بسیاری از محققان را به خود جلب کرده است. این ذرات به دلیل اندازه کوچک و ویژگیهای منحصربهفرد، قابلیت استفاده در علوم مختلف، مخصوصاً علوم زیستی را دارند. بررسیهای گذشته در حوزه نانوذرات نشان میدهند که به دلیل عدم وجود یک مدل منطقی از برهمکنش این ذرات با مولکولهای زیستی، تاکنون از روشهای آزمایش و خطا به ویژگیهای یک نانوذره و اثرات آن بر محیط واکنش و مولکولهای حاضر در آن محیط پی میبردند. به دلیل ورود این ذرات به گیاهان و بدن جانوران، و مخصوصاً استفاده روزافزون آنها در محصولات مورد استفاده انسان، بررسی اثرات ایجادشده توسط این ذرات بر مولکولها و میزبانهای زیستی ضروری به نظر میرسد. ، در این مقاله مروری اثرات سمی نانو ذرات نقره در محیطهای زیستی و آثار مخرب آنها بررسی شد و نتایج پژوهشهای بینالمللی در حوزههای مختلفی از جمله مولکولهای زیستی، میکروارگانیسمها، گیاهان، جانوران و انسان مرور شده است. در این میان یافتههای مرتبط با تریپسین و آلبومین سرم خونی انسانی در حوزه رفتارهای مولکولی، باکتریهای Staphylococcus aureus و Bacillus thurigiensis در زیرمجموعه باکتریایی و گیاه Oryza sativa L. (برنج)، از نظر ریختشناسی و پرتئومیکس بهطور ویژه مورد توجه قرار گرفتهاند.
کلیدواژهها
عنوان مقاله [English]
Nanotoxicity: Silver Nano Particles
نویسنده [English]
- Fatemeh Mirzajani
Faculty of New Technologies Engineering (NET) and Protein Research Center (PRC), Shahid Beheshti University, G.C., Tehran, Iran.
چکیده [English]
Nanoparticles with a wide range of unique features have been allocated many applications in the field of nanotechnology. Their special properties and their interaction with biological molecules have grabbed the attention of many researchers. These particles, because of their small size and unique characteristics, can be used in various fields, especially the life sciences. Because the lack of any logical model of nanoparticle and biomolecule interaction, their properties and influences on the environment have been evaluated using various separate and non-comparable studies. Nanoparticles interact with plants, animals, and humans and have various and essential impacts on them and these should be considered. The aim of this article is to conduct a morphological and proteomic study of the interaction of biomolecular, bacterial and plant models with silver nanoparticles. The findings are associated with trypsin and human blood serum albumin (as a molecular model), Staphylococcus aureus and Bacillus Thurigiensis (as bacterial models) and Oryza sativa L. (rice) as a plant model.
کلیدواژهها [English]
- Proteomics
- Morphological study
- Silver Nanoparticles
- S. aureus ، B. Thurigiensis ، Oryza sativa L
- Monteiro-Riviere, N.A., Tran, C.L. Nanotoxicology: Characterization, Dosing And Health Effects. Taylor and Francis. 2007
- Basra, A.S. Mechanisms of Environmental Stress Resistance in Plants, Chapter 11: Mechanisms of plant resistance to toxicity of aluminum and heavy metals. CRC Press. Wichita, Kansas USA.1997.
- Griffitt, R.J., Hyndman, K., Denslow, N.D., Barber, D.S. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences. 2009; 107: 404-415.
- Navarro, E., Baun, A., Behra , R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg , A., Santschi, P.H., Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008; 17: 372â386.
- Choi, O., Deng, K.K., Kimc, N.J., Jr, L.R., Surampalli, R.Y., Hu, Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research. 2008; 42: 3066-3074.
- Oukarroum, A., Bras, S., Perreault, F., Popovic, R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety. 2000; 78: 80-85.
- Chen, X., Schluesener, H.JNanosilver: A nanoproduct in medical application. Toxicology Letter. . 2008; 176: 12-1
- Panyala, N.R., Pena-Mendez, E.M., Havel, J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? Journal of Applied Biomedicine. 2008; 6: 117-129
- Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O. A mechanistic study of the antibacterial effect of silveer ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research. 2000; 52: 662-668
- Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D.S., Autrup, H. Toxicity of silver nanoparticles-nanoparticle or silver ion? Toxicology Letter. 2012; 208: 286-292.
- Li, T., Park, H.G., Lee, H.S., Choi, S.H. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles. Nanotechnology. 2004; 15: 660-663
- Gondikas, A.P., Morris, A., Reinsch, B.C., Marinakos, S.M., Lowry, G.V., Hsu-Kim, H. Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. 2012; 46: 3045-3037
- Chio, O., Clevenger, T.E., Deng, B., Surampalli, R.Y., Jr, L.R., Hu, Z. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research. 2009; 43: 1879-1889
- Kramer, J.R., Bell, R.A., Smith, D.S. Determination of sulfide ligands and association with natural organic matter. Applied Geochemistry. 2007; 22: 1611-1606
- Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., MCLaughlin, M.J., Lead, J.R. Nanomaterial in the environment: behavior, fate, bioavailability and effects. Environmental Toxicology and Chemistry. 2008; 27: 1825-1851.
- Lynch, I., Dawson, K.A. Protein-nanoparticle interaction. Nanotoday. 2008; 3: 40-47
- Lynch, I., Salvati, A., Dawson, K.A. Protein-nanoparticle interactions: What does the cell see? Nature Nanotechnology. 2008; 4: 546-547
- Lynch, I. Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein-material interface. Physica. 2007; 373: 511-520
- Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramırez, J.T., Yacaman,
- M.J. The bactericidal effect of silver Nanoparticles. Nanotechnology. 2005; 16: 2346â2353
- Mirzajani, F., Ghassempour, A., Aliahmadi, A., Esmaeili, M.A. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology. 2011; 162: 542-549
- Sondi, I., Salopek-Sondi, B. Silver nanoparticle as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004; 275: 177-182
- Li, W.R., Xie, X.B., Shi, Q.S., Duan, S.S., Ouyang, Y.S., Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biomedical and Life Science. 2011; 24: 135-141
- Dror-Ehre, A., Mamane, H., Belenkova, T., Markovich, G., Adin, A. Silver nanoparticleâE. coli colloidal interaction in water and effect on E. coli survival. Journal of Colloid and Interface Science. 2009; 399: 521-526
- aMirzajani, F., Askari, H., Hamzelou, S., Schober, Y., Römpp, A., Ghassempour, A., Spengler, B. Proteomics Study of Silver Nanoparticles Toxicity on Bacillus thuringiensis. Ecotoxicology and Environmental Safety. 2013; 100: 130-122
- Hamdani, S.Z. Study shows silver nanoparticles attach to HIV-1 virus. Journal of Nanotechnology. 2005; 2pp. Original story at: www.physorg.com/news.html.
- Elechiguerra, J.L., Burt, J.L., Morones,J.R., Camacho-Bragado,A., Gao,X., Lara, H.H., Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 2005; 3: 10-1
- Jo, Y.K., Kim, B.H., Jung, G. Antifungal activity of silver ions and nanoparticles on Phytopathogenic Fungi. Plant Disease. 2009; 93: 1037-1043
- Monica, R.C., Cremonini, R. Nanoparticles and higher plants. Caryologia. 2009; 62: 161-165
- Oberdorster, G., Stone, V., Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicolog. 2002; 1: 25-2
- Lin, D., Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution. 2011; 150: 243-250
- Lin, D., Xing, B. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology. 2008; 42: 5580-5585.
- Racuciu, M., Creanga, D.E. TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Romanian Journal of Physics. 2007; 52: 391-395
- Kumari, M., Mukherjee, A., Chandrasekaran, N. Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment. 2009; 407: 5243â5246.
- bMirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety. 2013; 88: 48-54
- Ispas, C., Andreescu, D., Patel, A., Goia, D., Andreescu, S., Wallace, K.N. Toxicity and Developmental Defects of Different Sizes and Shape Nickel Nanoparticles in Zebrafish. Environmental Science and Technology. 2009; 43: 6349-6356
- Asharani, P.V., Wu, Y.L., Gong, Z., Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2009; 19: 255102 (8pp
- Wang, H., Wick, R.L., Xing, B. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution. 2009; 157: 1171-1177.
- Yildirimer, L., Thanh, N.T.K., Loizidou, M., Seifalian, A.M. considerations of clinically applicable nanoparticles. Nano Today. 2011; 6: 585-607
- Veranth, J.M., Kaser, E.G., Veranth, M.M., Koch, M., Yost, G.S. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Particle and Fibre Toxicology. 2007; 4: 18-1