مطالعه کارایی باکتری P. aeruginosa در حذف فلز روی از محلول‌های آبی

نوع مقاله : Original Articles

نویسندگان

1 دانش آموخته کارشناسی ارشد آلودگی دریا، دانشکده علوم دریایی، داﻧﺸﮕﺎه ﻋﻠﻮم و ﻓﻨﻮن درﯾﺎﯾﯽ ﺧﺮﻣشهر

2 استادیار گروه زیست شناسی دریا، دانشکده علوم دریایی، دانشگاه ه علوم و فنون دریایی خرمشهر

چکیده

تاکنون مطالعات گسترده‌ای در زمینه روش‌های پاک‌سازی محیط از ‌‌فلزات‌سنگین صورت پذیرفته است که در این بین، استفاده از جاذب‌های زیستی در مقایسه با روش‌های فیزیکی و شیمیایی گزینه مناسب‌تری محسوب می‌شود. در این مطالعه با استفاده از گرب ون وین از رسوبات سطحی (عمق کم‌تر از 3 متر) بندر امام خمینی‌(ره) نمونه‌برداری و باکتری P. aeruginosa ‌‌به‌عنوان گونه مقاوم به فلز روی جداسازی و شناسایی گردید. مطالعه رشد باکتری P. aeruginosa در ‌‌غلظت‌های 20، 40، 80، 160 و320 ‌‌میلی‌گرم بر لیتر فلز روی نشان داد که با افزایش غلظت روی در محیط رشد باکتری کاهش ‌‌می‌یابد. به‌گونه‌ای که حداکثر رشد باکتری در غلظت 20 ‌‌میلی‌گرم بر لیتر این فلز 93/0 ‌‌اندازه‌گیری شد و با افزایش غلظت فلز در محیط به 320 ‌‌میلی‌گرم بر لیتر، رشد باکتری به 37/0 کاهش یافت که اختلاف ‌‌معنی‌داری با حداکثر رشد باکتری در غلظت 20 ‌‌میلی‌گرم بر لیتر فلز روی را نشان می‌داد (05/0p˂). بررسی توانایی جذب زیستی فلز روی توسط باکتری P. aeruginosa در ‌‌غلظت‌های 25، 50 و 100 ‌‌میلی‌گرم بر لیتر روی نشان داد که با افزایش غلظت فلز در محیط، باکتری میزان فلز بیش‌تری را جذب خواهد کرد. P. aeruginosa قادر به حذف 86درصدی فلز روی در غلظت 25 ‌‌میلی‌گرم بر لیتر این فلز ‌‌می‌باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Study of P. aeroginosa Capable of Removing Zn(II) from Aqueous Solution

نویسندگان [English]

  • Razieh Lamoochi 1
  • Alireza Safahieh 2
  • Negin Salamat 2
  • Hajar Abyar 1
1 MSc. in Marine Pollution, Faculty of Marine Science, Khorramshahr university of Marine Science and Technology
2 Assistant Professor, Department of Marine Biology, Faculty of Marine Science., Khorramshahr University of Marine Science and Technology
  1. Gopalakrishnan S, Thilagam H, Vivek Raja P. Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroid elegans. Chemosphere; 2008; 71: 515-528.
  2. Nomanbhay S.M. and Palanisamy K. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal Biotechnology; 2005; 8(1):142-150.
  3. Wang J.L. and Chen C. Biosorbents for heavy metals removal and their future. Biotechnology; 2009; 27: 195–226.
  4. Alluri H.K, Ronda S.R, Settalluri, V.S, Bondili J.S, Suryanarayana, V. and Venkateshwar, P. Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology; 2007; 6(25): 2924-2931.
  5. Igwe J.C. and Abia A.A. A bioseparation process for removing heavy metals from waste water using biosorbrnts. African Journal of Biotechnology; 2006; 5(12): 1167-1179.
  6. Karim salmani B, Amozgar M. and Hamedi, J. Bisorption of lead by bacteria isolated from petrochemical wastewater. Environmental Science and Technology;1390;13(2): 41-54. [In Persian]
  7. Khanafari A, Eshghdoost S, Mashinchian A. Removal of lead and chromium from aqueous solution by Bacillus circulans biofilm. Iranian Journal of Environmental Health Science and Engineering; 2008; 5(3): 195-200.
  8. Shirdam R, Khanafari A. and Tabatabaee A. Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iranian Journal of Biotechnology; 2006; 4(3): 180-187.
  9. Lotfi H, Baghaei H, Mosavi S. and Khayambashi S. Persian Gulf and protect the environment. Human geography; 1389; 3 (1): 1-9. [In Persian]
  10. Zolgharnein H, Karami K, Mazaheri Assadi M. and Dadolahi S. Investigation of heavy metals biosorption on pseudomonas aeroginosa strain MCCB 102 isolated from the persian gulf. Asian Journal of Biotechnology; 2010; 5: 1-11.
  11. Abyar H, Mojodi F, Safahieh A, Zolgharnein H. and Zamani I. The role of Pseudomonas putida in bioremediation of naphthalene and copper. World Journal of Fish and Marine Sciences; 2011; 5: 444-449.
  12. Safahieh A, Abyar H, Roostan Z, Zolgharnein H. and Mojodi F. Isolation and characterization of Pseudomonas resistant to heavy metals and poly aromatics hydrocarbons (PAHs) from Persian Gulf sediments. African Journal of Biotechnology; 2012; 11(19) 4418-4423.
  13. Dzairi F.Z, Zeroual Y, Moutaouakkil A, Taoufik J, Talbi M, Loutfi M, Lee K. and Blaghen M. Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Annals of Microbiology; 2004; 54(4): 353-364.
  14. Bergey D.H, Staleey T.J, King R.N. and Brenner D. Bergey s Manual of Systematic Bacteriology. 6th ed. New York: Springer ; 2005; 1123-1129.
  15. Kim S.U, Cheong Y.H, Seo D.C, Hur J.S, Heo J.S. and Cho, J.S. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Science and Technology; 2007; 55(1-2): 105-111.
  16. Azza A.A, Wesam A.H, Hedayat M.S. and Ghada A.A.F. Biosorption of some heavy metal ions using bacterial species isolated from agriculture waste water drains in Egypt. Journal of Applied Sciences Research; 2009; 4: 372-383
  17. .Andreoni V, Colombo M, Colombo A, Vecchio A. and Finoli C. Cadmium and zinc removal by growing cells of pseudomonas putida strain B14 isolated from a metal-impacted soil. Annals of Microbiology; 2003; 53: 135-148.
  18. Edward Raja Ch, Anbazhagan K. and Sadasivam Selvam G. Isolation and Characterization of A Metal-resistant Pseudomonas aeruginosa Strain, World Journal of Microbiology and Biotechnology; 2006 ; 22: 577-585.
  19. Mathivanan K., Balasubramanian V. and Rajaram R. Bacterial resistant to mercury pollution through genetic transformation. World Applied Sciences Journal; 2010; 8(4): 400-403.
  20. Abyar H. Isolation and Identification of Marine Aerobic Bacteria Resistant to cadmium and copper. in Imam Khomeini Port and Determination of Their Ability in Metal Biosorption from the Surrounding Medium. M.Sc. Thesis. Khorramshahr University of Marine Science and Technology;1389. p. 130. [In Persian]
  21. Gikas P, Sengor S.S, Ginn T, Meberly J. and Peyton B. The heavy metal and temperatur on microbial growth and lag. Global NEST Journal; 2009; 3: 325-332.
  22. Tarangini K. Biosorption of heavy metals using individual and mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. M.S. Thesis. Department of chemical engineering; 2009; 2-70.
  23. Wierzba S. and Latala A. Biosorption lead(II) and nikel(II) from an aqueous solution by bacterial biomass Pol. J. Chem. Technol; 2010; 12: 72–78.
  24. Hussain, M.A., Salleh, A., Milow, P.,. Charachterization of the adsorption of the lead(II) by the nonliving biomass Spirogyra neglecata (Hasall) Kutzing. American Jurnal of Biochemistry and Biotechnology. 2009. 2: pp. 75-83.
  25. King P, Rakesh N, Beenalahari S, Kumar Y.P. and Prasad V.S.R.K. Removal of lead from aqueous solution using Syzgium cumini L. equilibrium and kinetic studies. Environmental Pollution Control Engineeting;. 2006; 27: 340-347.