نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا،همدان، ایران
چکیده
سابقه و هدف: رشد سریع جمعیت، کشاورزی، شهرنشینی و صنعت موجب افزایش تقاضای آب و رقابت برای مصرف های مختلف شده است. ترویج بهره وری آب در کشاورزی تأثیر قابل توجهی بر افزایش راندمان مصرف آب دارد. روشهای توزیع و تحویل آب نیز نقش تعیین کننده ای در میزان انعطافپذیری سامانه های آبیاری و بهبود بهرهوری آب دارند. از میان روشهای موجود، روش تحویل برحسب درخواست، انعطافپذیری بیشتری نسبت به روش گردشی دارد و نسبت به روش برحسب تمایل (برحسب تقاضا) به زیرساختهای کمتری نیاز دارد. تنظیم مناسب سازه ها و دستورالعمل های بهره برداری بین درخواست های متوالی تابعی از تغییرات دبی، فاصله زمانی بین بهره برداری ها، همزمانی درخواست های مختلف، شرایط فیزیکی سازه های کانال و رفتار هیدرودینامیکی جریان می باشد که موجب پیچیدگی و لزوم استفاده از روش های ریاضی جهت مدلسازی و بهره برداری میگردد. در این تحقیق از روش جدید [i]FSL و روش [ii]ANN استفاده گردید و به منظور تعیین عملکرد روش جدید بکار رفته عملکرد آن با روش ANN مقایسه گردید. داده های بکار رفته نیز مربوط به کانال عقیلی شرقی واقع در استان خوزستان می باشند.
مواد و روش ها: در این تحقیق، مقایسه کارائی دو روش یادگیری مدرن (یادگیری تقویتی سارسای فازی) و یادگیری سنتی (شبکههای عصبی مصنوعی) به منظور برنامه ریزی توزیع و تحویل آب در روش تحویل برحسب درخواست در کانال عقیلی شرقی استان خوزستان انجام شد. به منظور شبیه سازی از 70%، 15% و 15% داده ها به ترتیب برای آموزش، کالیبراسیون و اعتبار سنجی مدلها استفاده شد. یادگیری و آموزش داده های دبی و بازشدگی آبگیرها توسط شبکه های عصبی مصنوعی پرسپترون چند لایه و تابع پایه شعاعی انجام و بهترین حالت تنظیم سازه ها با استفاده از معیارهای ضریب همبستگی و ریشه میانگین مربعات خطا انتخاب شد. همچنین، بهترین تنظیم سازهها با استفاده از روش یادگیری تقویتی نیز استخراج گردید. به منظور ارزیابی نتایج نیز از سنجه های راندمان، کفایت، پایداری و عدالت در تحویل آب و همچنین سنجه های میانگین و حداکثر نوسانات سطح آب نسبت به عمق هدف استفاده گردید.
نتایج و بحث: براساس نتایج به دست آمده مشاهده شد که سنجه [iii]MPA در روش شبکه عصبی مصنوعی برای بلوکهای اول و دوم کانال به ترتیب برابرند با 952/0 و 919/0 و در حالت استفاده از روش سارسای فازی این مقادیر به ترتیب برابر 996/0 و 1 می باشند. همچنین مقادیر سنجه [iv]MPF در هنگام شبیه سازی با استفاده از شبکه عصبی در هر دو بلوک برابر 1 می باشد و در شبیه سازی با استفاده از FSL این مقادیر برابر 999/0 و 971/0 می باشند. در روش MLP خطای حداکثر نوسانات سطح آب در بلوک های اول و دوم به ترتیب برابرند با 2/9 و 8/3 درصد و در روش FSL این خطاها برابرند با 5/5 و 4/7 درصد. نتایج نشان داد که سنجه های میانگین و حداکثر نوسانات سطح آب برابر حداقل خود می باشند و سنجه های تحویل آب نیز به مقادیر مطلوبشان نزدیک می باشند. به طور کلی می توان نتیجه گرفت با توجه به سنجه های ارزیابی، روش FSL نتایج بهتری نسبت به روش MLP دارد. با این حال نتایج روش MLP نیز قابل قبول و معتبر می باشد.
نتیجه گیری: در این تحقیق از روش شبکههای عصبی پرسپترون چندلایه و تابع پایه شعاعی در برنامه متلب جهت تعیین دستورالعملهای بهرهبرداری کانال عقیلی شرقی در استان خوزستان استفاده شد و نتایج با روش سارسای فازی مورد مقایسه قرار گرفت. بهمنظور شبیهسازی هیدرودینامیکی کانال نیز، مدل ICSS مورد استفاده قرار گرفت. بررسیها نشان داد که نتایج شبکه پرسپترون چندلایه از شبکه تابع پایه شعاعی بهتر است و نتایج مدلسازی با روش سارسای فازی نیز از روش پرسپترون چندلایه مناسبتر میباشد. اما بهرحال هر دو روش میتوانند در عمل مورد استفاده قرار گیرند.
کلیدواژهها
عنوان مقاله [English]
Operation of irrigation canals using intelligent methods
نویسندگان [English]
- Fateme Bayat 1
- Hesam Ghodousi 1
- Kazem Shahverdi 2
1 Department of Water Engineering, Faculty of Agriculure, University of Zanjan, Zanjan, Iran
2 Department of Water Engineering, Faculty of Agriculure, Bu-Ali Sina University, Hamadan, Iran
چکیده [English]
Introduction: The rapid growth of population, agriculture, urban and industries has led to increasing water demand and competition for its consumptions. The promotion of agricultural water productivity has the main effect on improving water consumption. Water delivery and scheduling methods are important to increase the flexibility of irrigation systems. Among different available methods, the on-request water delivery has higher flexibility than the rotational one and doesn’t need the high cost of automatic systems. The appropriate adjustment of the structures and their operational instructions between successive requests is a function of discharge variation, time interval between operations, coincidence of different request, physical condition of canal and structures and hydrodynamic behavior of the flow, which is a complex task. To obtain the performance of the recently utilized method, i.e., FSL (Fuzzy SARSA Learning), it is necessary to compare it to a traditional method like Artificial Neural Network (ANN). In this research, data from the east Aghili canal was trained for programming water delivery and distribution using MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) networks of ANN with the on-request method. Finally, the results of the FSL and ANN models were compared.
Material and methods: In this research, the MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) networks of ANN were used to determine the procedure for exploiting the operational instructions of the on-request method in the east Aghili canal, in Khuzestan Province, using its flow and gate opening data. In this research, 70%, 15%, and 15% of data were used to train, test, and validate the model, respectively. The correlation coefficient and root mean square error were used for determining the better method. Modeling of the canal was done using the Irrigation Canal Conveyance System (ICSS) hydrodynamic model. To evaluate the MLP, RBF, and FSL outputs, maximum and average errors of water depth, adequacy, efficiency, equity, and dependability were used.
Results and discussion: The operational instructions were determined using the MLP in March 2017 in the east Aghili canal, and were compared to the corresponding determined operational instructions using FSL. According to the obtained results, it was observed that the MPA index in the ANN method in the first and second block of this channel, respectively were 0.952 and 0.919 and in the case of using the FSL method, these values were equal to 0.996 and 1. Also, the MPF index in the simulation using the ANN in both blocks were equal to 1 and in the case of FSL, these values were equal to 0.999 and 0.971. The maximum error of MAE of water level in the first and second block of the study, respectively were equal to 9.2 and 3.8 % and in the case of using the FSL method, these were equal to 5.5 and 7.4 %. The results showed that the MLP was better than the RBF to determine the operational instructions. The MAE and IAE indicators were minimum, and the water delivery indicators were close to their desired values according to the Molden and Gates (1990) criteria. Aldo, it was revealed that the FSL was better than the MLP, however, the MLP results were valid and can be used in practice.
Conclusion: In this research, the ANN model was used for determining operational instructions using MATLAB. The training was done using the MLP and RBF using the east Aghili canal data. The ICSS was used for simulating the canal. The results showed that the MLP was better than RBF, and the FSL model was better than the MLP as well. However, both of them can be used in practice.
کلیدواژهها [English]
- East Aghili canal
- Performance indicators
- on-request method
- Operation performance