بررسی میزان سازگاری هیبریدهای امیدبخش ذرت دانه‌ای به تغییرات محیطی در منطقه‌های مختلف کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی و به نژادی، دانشکده علوم کشاورزی و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

چکیده

سابقه و هدف: برای سازگاری در مقابل تغییرات آب و هوایی، پایداری سیستم های کشاورزی نقش کلیدی را دارند. شواهد زیادی وجود
دارد که مشخص می کند با تغییر شرایط محیطی، تنوع زیستی می تواند سبب افزایش ثبات فرایندهای اکوسیستمی گردد. بنابراین کارآیی برنامه های اصلاح نیازمند درک صحیحی از عکس العمل ارقام اصلاح شده به محیط های با شرایط اقلیمی و خاکی متفاوت می باشد. بنابراین این تحقیق، به منظور بررسی پاسخ هیبریدهای جدید ذرت دانه ای نسبت به شرایط متفاوت محیطی و تعیین پایداری عملکرد دانه آنها انجام گرفت.
مواد و روش ها: این بررسی با استفاده از 16 هیبرید ذرت دانه ای در قالب طرح بلوکهای کامل تصادفی با سه تکرار در هفت منطقه با
شرایط اقلیمی و جغرافیایی متفاوت در سال 1397 محیط، تجزیه پایداری با × به اجرا درآمد. با توجه به معنی دار بودن اثر متقابل هیبرید استفاده از دو روش چند متغیره AMMI و GGE biplot انجام شد، تا پایدارترین و پرمحصول ترین هیبریدها شناسایی شوند.
نتایج و بحث: براساس نتایج مدل AMMI ، فقط دو مؤلفه اصلى اول مدل AMMI2) AMMI و AMMI1 ) معنی دار شدند و 53 / 68 درصد محیط را توجیه نمود. براساس آماره های مدل × تغییرات اثر متقابل ژنوتیپ AMMI ) SPCA1 و ASV ) هیبریدهای شماره 16 ( SC704 ) و 1 ( KLM77002/3-1-1-1-1-1-1-3 × K18 ) به عنوان هیبریدهایى با پایداری بالاتر انتخاب شدند. نتایج انجام تجزیه پایداری با روش GGE biplot گویای توجیه 5 / 71 درصد از کل تغییرات عملکرد دانه، با دو مؤلفه اول و دوم GGE biplot بود. هیبریدهای شماره 16 SC704) ،) 1(KLM77002/3-1-1-1-1-1-1-3 × K18) و 14KLM77029/8-1-1-1-2-2-2 × B73) ( به عنوان هیبریدهایى با پایداری بالاتر با روش گرافیکی GGEbiplot انتخاب شدند.
نتیجه گیری: به طورکلی براساس عملکرد دانه و تحلیل پایداری با روش های مختلف هیبریدهای شماره 16SC704) ( و 1 KLM77002/3-1-1-1-1-1-1-3 × K18) ( به ترتیب با عملکرد دانه 76 / 12 و 72 / 11 تن در هکتار به عنوان پایدارترین و پرمحصول ترین هیبریدها با سازگاری عمومی بالایی بودند و می توانند مورد کشت در کشور قرار گیرند. بررسى بایپلات 1 همبستگى بین منطقه ها نشان داد که بردارهای محیطى کرمانشاه، اصفهان و شیراز و همچنین منطقه های مغان و میاندوآب بسیار نزدیک به هم بوده، بنابراین این محیط ها در رتبه بندی و گروه بندی هیبریدها شبیه هم بودند. همچنین منطقه های کرمان و کرج از نظر تفکیک هیبریدها مشابهت کمتری با سایر منطقه ها داشتند. بنابراین با توجه قدرت تفکیک بالای هیبریدها در منطقه های شیراز، میاندوآب، کرمان و کرج توصیه می شود جهت صرفه جویی در هزینه آزمایش ها در سال های آتی به جای هفت منطقه، آزمایش ها در این چهار منطقه انجام پذیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The adaptability of promising maize hybrids to environmental changes in different regions of Iran

نویسندگان [English]

  • Hossein Momeni 1
  • Mohammadreza Shiri 2
  • Eslam Majidi Hervan 1
  • Mahmoud Khosroshahli 1
1 Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
چکیده [English]

Introduction: The sustainability of agricultural systems plays a key role in adapting to climate change. There is ample evidence that biodiversity can increase the stability of ecosystem processes by changing environmental conditions. Therefore, the effectiveness of breeding programs requires a correct understanding of the reaction of breeding cultivars to environments with different climatic and soil conditions. Therefore, this study was conducted to assess the response of some new maize hybrids to divergent environmental conditions and determine their grain yield stability.
Material and methods: This study was conducted with 16 maize hybrids using a randomized complete block design with three replications in six locations, during the 2017 cropping season. Considering significant differences for hybrid × environment (GxE) interaction, stability analyses were performed using AMMI and
GGE-biplot methods to determine stable and high-yielding hybrids.
Results and discussion: The results of the AMMI model showed that only the first two principal components of AMMI (AMMI1and AMMI2) were significant and described 68.53% of the variance of G×E interaction. Based on the results of statistics of the AMMI model (ASV and SPCA1), hybrids No. 16 (SC704) and 1 (KLM77002/3-1-1-1-1-1-1-3 × K18) were recognized as the most stable hybrids. Stability analysis by GGE biplot procedure explained 71.5% of grain yield variation due to two components of GGE. In addition, hybrids No. 16 and 1 were identified as superior and stable hybrids by the GGE biplot graphical method.
Conclusion: Generally, results of grain yield and stability analyses showed that hybrids No. 16 and 1 with 12.76 and 11.72 t/ha yields, respectively, were better than other hybrids across environments for yield and stability with wide adaptation and thus can be cultivated in Iran. Also, biplot analysis of correlation among environments revealed that Kermanshah, Esfahan, and Shiraz, as well as and Moghan and Miyandoab were closer and similar in ranking, grouping, and assessing stability. Also, Kerman and Karaj regions were less similar to other regions in terms of hybrids discrimination. Considering the high discriminate power of hybrids in Shiraz, Miyandoab, Kerman, and Karaj environments, and in order to decrease the costs, it is recommended to conduct future trials in the aforementioned environments.

کلیدواژه‌ها [English]

  • امی
  • گرافیکی
  • GGE biplot
  • سازگاری
Albert, M.J.A., 2004. A comparison of statistical methods to describe genotype×environment interactionand yield stability in multi-location maize trials. MS.c. Thesis. University of the Free State, Bloemfontein.
Basafa, M. and Taheriyan, M., 2016. Analysis of stability and adoptability of forage yield among silage corn hybrids. Journal of Crop Breeding. 8(19), 185-191.
Božović, D., Zivanović, T., Popović, V., Tatić, M., Gospavić, Z., Miloradović, Z., Stanković, G. and Dokić, M., 2018. Assessment stability of maize lines yield by GGE-biplot analysis. Genetika. 50, 755-770.
Branković-Radojĉić, D., Vojka Babić, Z.G., Ţivanović, A.R., Filipović, M. and Srdić, J., 2018. Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika. 50(3), 1067-1080.
Chamekh, Z., Karmous, C., Ayadi, S., Sahli, A., Hammami, Z., Fraj, M.B., Benaissa, N., Trifa, Y., Slim-Amara, H., 2015. Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agric. Water Manag. 152, 1–6.
Choukan, R. and Shirkhani, A., 2010. Estimation of heat units requirements for different maturity groups of grain maize hybrids in Kermanshah. Seed and Plant Production Journal. 26 (3), 259-284.
Choukan, R., 2011. Genotype, environment and genotype×environment interaction effects on the performance of maize (Zea mays L.) inbred lines. Crop Breeding Journal. 1, 97-103.
Ebdon, J.S. and Gauch, H.G., 2002. Additive main effect and multiplicative interaction analysis of national turf grass performance trials: Interpretation of genotype×environment interaction. Crop Science. 42, 489-496.
Ebrahimi, M.K. and Delkhoush, B., 2011. Chemical evaluation of oils extracted from Eight New varieties of soybean. Journal of Food Technology and Nutrition. 8(1), 72-84. (In Persian with English abstract).
Emami Bistgani, Z., Siadat, S. A., Bakhshandeh, A., and Shirsmaoeli, G., 2014. Effect of plant density on yield, agronomic traits in new variety sunflower. Applied Field Crops Research. 27(3), 69-75. (In Persian with English abstract).
Fan, X.M., Kang, M.S., Chen, H., Zhang, Y., Tan, J. and Xu, C., 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal. 99, 220-228.
Flores, F., Moreno, M.T. and Cubero, J.I., 1998. A Comparison of univariate and multivariate methods to analyze G×E interaction. Field Crop Research. 56, 271-286.
Gauch, H.G. and Zobel, R.W., 1997. Identifying mega-environments and targeting genotypes. Crop Science. 37, 311-326.
Gauch, H.G., 1992. Statistical analysis of regional trials. AMMI analysis of factorial designs. Elsevier, Amsterdam, Netherlands, 287 pp.
Jandong, E.A., Uguru, M.I. and Oyiga, B.C., 2011. Determination of yield stability of soybean genotypes across diverse soil pH levels. Journal of Applied Biosciences. 43, 2924 – 2941.
Kaya, Y., Akcura, M. and Taner, S., 2006. GGE-biplot analysis of multi-environment yield trials in bread wheat. Turkish Journal of Agriculture and Foresty. 30, 325-337.
Koocheki A.R., Sorkhilaleloo B. and Eslamzadeh Hesari M.R., 2012. Yield stability of barley elite genotypes in cold regions of Iran using GGE biplot. Seed and Plant Improvement Journal. 28-1(4), 533-543. (In Persian with English abstract).
Mirzavand, J., Sameni, A.M., Moosavi, S.A.A., Afzalinia, S. and Karimian, N.A., 2019. Evaluation of water infiltration models efficiency affected by tillage systems and residue management in wheat-corn rotation. Iranian Journal of Soil Research. 32(4), 457-470. (In Persian with English abstract).
Mohammadi, R. and Amri, A., 2008. Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica. 159(3), 419-432.
Mohammadi, R., Armion, M., Zadhasan, E., Ahmadi, M.M. and Sadeghzadeh Ahari, D., 2012. Genotype×environment interaction for grain yield of rainfed durum wheat using the GGE bipot model. Seed and Plant Improvement Journal. 28-1 (3), 503-518. (In Persian with English abstract).
Mortazavian, S.M.M., Nikkhah, H.R., Hassani, F.A., Sharif-al-Hosseini, M., Taheri, M. and Mahlooji, M., 2014. GGE-biplot and AMMI analysis of yield performance of barley genotypes across different environments in Iran. Journal of Agricultral Science and Technology. 16, 609-622.
Mühleisen, J., Piepho, H.P., Maurer, H.P., Longin, C.F.H., Reif, J.C., 2014. Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor. Appl. Genet. 127, 309–316.
Müller, C., Elliott, J., Pugh, T.A.M., Ruane, A.C., Ciais, P., Balkovic, J., Deryng, D., Folberth, C., Cesar Izaurralde, R., Jones, C.D., Khabarov, N., Lawrence, P., Liu, W., Reddy, A.D., Schmid, E., Wang, X., 2018. Global patterns of crop yield stability under additional nutrient and water inputs. PLoS One, 13(6),1-14.
Najafi Mirak, T., 2011. Study of grain yield stability of bread wheat genotypes in cold agro-climatic zone of Iran. Iranian Journal of Crop Science. 13(2), 380-394. (In Persian with English abstract).
Najafi, E., Devineni, N., Khanbilvardi, R.M., Kogan, F., 2018. Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future. 6(3), 410–427.
Najafinezhad, H., and Javaheri M.A., 2017. Evaluation of yield and yield components of grain corn under the influence of planting date and hybrid in winter cultivation. Journal of plant Ecophysiology. 29, 125-135. (In Persian with English abstract).
Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., Micale, F., 2011. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112.
Peltonen-Sainio, P., Jauhiainen, L., Trnka, M., Olesen, J.E., Calanca, P., Eckersten, H., Eitzinger, J., Gobin, A., Kersebaum, K.C., Kozyra, J., Kumar, S., Marta, A.D., Micale, F., Schaap, B., Seguin, B., Skjelvag, A.O., Orlandini, S., 2010. Coincidence of variation in yield and climate in Europe. Agric. Ecosyst. Environ. 139, 483–489.
Pourdad, S.S. and Jamshid Moghaddam M., 2013. Study on genotype ×environment interaction through GGE biplot for seed yield in spring rapeseed (Brassica Napus L.) in rain-fed condition. Journal of Crop Breeding. 5(12), 1-14. (In Persian with English abstract).
Purchase, J., 1997. Parametric analysis to describe genotype environment interaction and yield stability in winter wheat. Ph.D. University of the Free State, South Africa. 84 pp.
Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a third of global crop yield variability. Nat Commun, 6(1), 1-9.
Reidsma, P., Ewert, F., Lansink, A.O., Leemans, R., 2010. Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur. J. Agron. 32, 91-102.
Saeid Rahnejat, S. and Farshadfar, E., 2015. Evaluation of phenotypic stability in canola Brassica napus) using GGE-biplot. International Journal of Biosciences. 6, 350-356.
Samonte, S.O.P.B., Wilson, L.T., Mc Clung, A.M. and Medley, J. C., 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science. 45, 2414-2424.
Sharifi, P., Servati, M. and Mohammadkhani, N., 2017. Climate change impact on land suitability evaluation for some rainfed crops in miandoab region. Iranian Journal of Soil Research. 32(2), 243-254. (In Persian with English abstract).
Shiri, M. and Bahrampour, T., 2015. Genotype×environment interaction analysis using GGE biplot in grain maize (Zea mays L.) hybrids under different irrigation conditions. Cereal Research. 5, 83-94. . (In Persian with English abstract).
Shiri, M., 2013. Grain yield stability analysis of maize (Zea mays L.) hybrids in different drought stress conditions using GGE biplot analysis. Crop Breeding Journal. 3(2), 107-112.
Shiri, M., 2016. Evaluation of fresh and dry forage yield stability of forage sorghum varieties (Sorghum bicolor L. moench) in different conditions. Journal of Crop Breeding. 8, 93-101.
Smith, R.G., Menalled, F.D., Robertson, G.P., 2007. Temporal yield variability under conventional and alternative management systems. Agronomy Journal. 99, 1629–1634.
Sneller, C.H., Kilgore-Norquest, L. and Dombek, D., 1997. Repeatability of yield stability in soybean. Crop Science. 37, 383-390.
Tigchelaar, M., Battisti, D.S., Naylor, R.L., Ray, D.K., 2018. Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci. 115(26), 6644-6649.
Voltas, J., Lopez-Corles, H. and Borras, G., 2005. Use of biplot analysis and factorial regression for the investigation of superior genotypes in multi-environment trials. European Journal of Agronomy. 22, 309-324.
Yan, W. and Hunt, L. A., 2002. Biplot analysis of diallel data. Crop Science. 42, 21-30.
Yan, W. and Kang, M.S., 2003. GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL, USA. 288 pp.
Yan, W. and Tinker, N.A., 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science. 86, 623-645.
Yan, W., 2001. GGEbiplot-A widow’s application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal. 93, 1111-1118.
Yan, W., Hunt, L.A., Sheng, Q. and Szlavnics, Z., 2000. Cultivar evaluation and mega environment investigations based on the GGE biplot. Crop Science. 40 ,597-605.
Zali, H., Farshadfar, E., Sabaghpour, S.H. and Karimizadeh, R., 2012. Evaluation of genotype × environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research. 3 (7), 3126-3136.
Zobel, R.W., Wright, M.J. and Gauch, H.G., 1988. Statistical analysis of a yield trial. Agronomy Journal. 80, 388-393.