اثرهای ناشی از تغییرهای کاربری زمین بر کیفیت آب کشاورزی در دشت کرمان با استفاده از روش سنجش از دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران

2 گروه مهندسی طبیعت، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران

چکیده

سابقه و هدف:
کاربری زمین همواره یکی از مهم ترین شاخص‌هایی بوده است که انسان از طریق آن محیط‌زیست خود را تحت تأثیر قرار داده است. کاربری فعالیتی‌ است که انسان از طریق مصرف منبع­ های طبیعی زمینه ­های رشد و پیشرفت اجتماعی اقتصادی خود را فراهم کرده و در عین حال ساختارها و فرآیندهای موجود در محیط‌زیست را تغییر می‌دهد. یکی از مهم ترین منبع­ هایی که در این دهه از طریق تغییر کاربری زمین مورد آسیب قرار گرفته است، منبع­ های آب بویژه آب زیرزمینی است. با توجه به اهمیت منبع ­های آب زیرزمینی در تأمین آب شرب و کشاورزی، پایش کیفی و توزیع زمانی و مکانی روند تغییرهای آن، از مبحث­های مهم در برنامه‌ریزی و مدیریت منابع آب است. از این رو تحقیق حاضر به بررسی اثرهای ناشی از تغییر کاربری بر کیفیت آب زیرزمینی در دشت کرمان می ­پردازد.
مواد و روش­ ها:
برای تهیه نقشه کاربری زمین دشت کرمان از تصویرهای ماهواره لندست 5، 7 و 8 که به ترتیب دارای سنجنده­های TM (1365)، ETM+ (1380) و سنجنده OLI (1395) می­ باشند، استفاده شد. همچنین به منظور بررسی روند تغییرهای کیفی منبع­ های آب زیرزمینی دشت کرمان از آمار و اطلاعات سال­ های 1381 و 1396 استفاده شد. سپس نقشه­ های پارامترهای کیفی در محیط ARC GIS 9.3  ترسیم شد. در ادامه این نقشه ­ها با استفاده از طبقه بندی برای مصرف­ های کشاورزی بر اساس روش ویلکوکس پهنه بندی شدند و منطقه­ های بحرانی و آلوده روی آن­ها مشخص گردید.
نتایج و بحث:
با استفاده از تصویر­های ماهواره­ای منطقه مورد بررسی به سه واحد کاربری تقسیم شده است. این واحدها شامل منطقه­ های مسکونی، زمین کشاورزی و زمین مرتعی است. کیفیت آب کشاورزی را از روی دیاگرامی به نام دیاگرام ویلکوکس به­دست آمد. نقشه‌های پهنه‌بندی مکانی پارامترهای آب زیرزمینی برای مصرف ­های کشاورزی بر اساس روش ویلکوکس ترسیم شده است. در نهایت با روی هم انداختن لایه­ های SAR و EC با نرم افزار  ArcGIS9.3 وضعیت کیفی آب منطقه برای مصرف ­های کشاورزی بر اساس طبقه بندی ویلکوکس در سال­های 1375 و 1393 تهیه شد (شکل 6) و مساحت هر کدام از گروه­ ها محاسبه گردید.
نتیجه­ گیری:
همچنین تغییرهای کاربری نشان داد که در کلاس کاربری مرتع روند کاهشی اتفاق افتاده است. به‌طوری‌که در مدت 30 سال 1/691 کیلومترمربع از سطح زمین­های مرتعی کاهش‌یافته است. همچنین سطح زمین ­های کشاورزی و منطقه­ های مسکونی افزایش یافته، که این افزایش به مراتب بیشتر از زمین­ های کشاورزی است. بر اساس طبقه بندی ویلکوکس پارامترهای  EC و SAR در مدت این دوره روند رو به افزایش داشته، ولی روند افزایش پارامتر EC بیشتر بوده است. برای پارامتر EC، کمابیش بیشتر منطقه دارای میزان بالایی از این عنصر می‌باشد، که شدت آن در قسمت­های غرب منطقه بیش از دیگر منطقه ­ها است و با گذشت زمان بر شدت آن افزوده شده است. برای عنصر SAR نیز بررسی ­ها نشان داد که میزان این عنصر در سال 1380 در تمامی منطقه در کلاس خوب قرار داشته و در سال 1393 بخش­ های غربی منطقه مورد بررسی در کلاس متوسط قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of land use change on agricultural water quality in Kerman Plain using remote sensing technique

نویسندگان [English]

  • Tayyebeh Mesbahzadeh 1
  • Farshad Soleimani Sardoo 2
1 Department of reclamation of arid and mountain regions, Faculty of Natural Resources, University of Tehran, Tehran, Iran
2 Natural engineering , Faculity of Natural Resources, University of Jiroft, Jiroft, Iran
چکیده [English]

Introduction:
Land use has always been one of the most important indications of the adverse impact of mankind on their environment. It is an activity that human beings, through using natural resources, contribute to their socio-economic development and at the same time, alter the processes and structures within the environment. One of the most important sources that have been damaged during the past decades through land use change is water resources, especially groundwater. Considering the importance of groundwater resources in supplying drinking water and agriculture, qualitative monitoring and spatial and temporal distribution of the process of its changes are important issues in planning and managing water resources. Therefore, the present research investigates the effects of changing the use of groundwater quality in Kerman Plain.
Material and methods:
Land maps of Landsat 5, 7 and 8 were used for land use mapping in Kerman Plain. These are TM (1987), ETM + (2002) and OLI (2017) sensors, respectively. Also, in order to investigate the process of qualitative changes of groundwater resources in Kerman Plain, statistical data and information of 2002 and 2017 were used. Then, the maps of quality parameters were mapped to the ArcGIS 9.3 environment. Afterward, these maps were zoned to agricultural classes using Wilcox classification and the critical and contaminated areas were identified. . Spatial zonation maps of groundwater parameters for agricultural purposes were plotted based on Wilcox method. Finally, by coating the SAR and EC layers with ArcGIS9.3 software, the water quality status of the region for agricultural use according to Wilcox classification in 1996 and 2014 the area of each group was calculated.
Results and discussion:
Using satellite images of the studied area, it was divided into three user units. These units included residential areas, agricultural lands, and rangelands. The quality of agricultural water was obtained from a diagram called the Wilcox Diagram. Land use change showed that a decrease has occurred in the pasture user's class. In the course of 30 years, while 1.691 km2 of rangelands have been decreased, the area of agricultural land and residential areas has been increased. The increase was far more in residential areas than agricultural lands.
Conclusion:
 According to the Wilcox classification, the EC and SAR parameters were increased during this period, but the trend of increase in the EC parameter was higher. For the EC parameter, almost the majority of the region had a high level of this element, which is more intense in the western parts of the region than in other regions and has been increasing over time. For the SAR element, studies have shown that the amount of this element was in the good class in all areas of the region in 2002, except for the western parts of the study area which were in the middle class in 2014.

کلیدواژه‌ها [English]

  • Land use
  • Wilcox diagram
  • Satellite images
  • Kerman Plain
  1. Aghazadeh, N., Chitsazan, M. and Golestan, Y., 2017. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran. Applied Water Science. 7(7), 3599-3616.
  2. Agrawal, M. and Sharma, K.C., 2015. Physico-chemical contamination of groundwater in and around industrial areas of district Alwar, Rajasthan. Current World Environment. 10(2), , 676-682Alavi, N., Zaree, E., Hassani, M., Babaei, A.A., Goudarzi, G., Yari, A.R. and Mohammadi, M.J., 2016. Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination and Water Treatment. 57(50), 23686-23697.
  3. Arunprakash, M., Giridharan, L., Krishnamurthy, R.R. and Jayaprakash, M. 2014. Impact of urbanization in groundwater of south Chennai City, Tamil Nadu, India. Environmental Earth Sciences. 71(2), 947-957.
  4. Bhatt, G.D., Uniyal, S., Yadav, S. and Deka, P.K., 2015. Remote Sensing and GIS Tools Used for Change Detection Techniques in Chamoli District, Uttarakahnd, India. planning, International Journal of Innovative Research in Science, Engineering and Technology 4(9).8109-8121
  5. Bhuriya, V. and Dev, P., 2014. Groundwater Quality Evaluation for Agriculture/Irrigation of Meghnagar area, Jhabua Region, Madhya Pradesh, India. Asian Journal of Multidisciplinary Studies. 2(10). 35-41
  6. Butt, A., Shabbir, R., Ahmad, S.S. and Aziz, N., 2015. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science. 18(2), 251-259.
  7. Coppin P.I., Jonckheere, K., Nackaert, B. and,R. 2004. Digital change detection methods in ecosystem monitoring: a review. Remote Sensing,
  8. (9), 1565–1596.
  9. Damavandi, A., Karimi, A. and Takasi, M., 2005. Evaluation of surface water and groundwater quality changes in Zanjan province. The second national conference on erosion and sedimentation, Tehran. Iran . (In Persian)
  10. Deng, J.S., Wang, K., Deng, Y.H. and Qi, G.J.,2008. PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing. 29(16), 4823-4838.
  11. Ghanbari, N., Khosravi, H., Zehtabian, G., Tavili, A. and Malekian, A., 2017. The zoning of groundwater quality and quantity for agricultural purpose using Wilcox model and Geographic Information System (GIS): A case study. International Journal of Ecological Economics and Statistics™. 38(4), 23-32.
  12. Giri, S., Mukhopadhyay, A., Hazra, S., Mukherjee, S., Roy, D., Ghosh, S., ... and Mitra, D. 2014. A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Journal of coastal conservation, 18(4), 359-367.
  13. Haile, E. and Fryar, A.E., 2017. Chemical evolution of groundwater in the Wilcox aquifer of the northern Gulf Coastal Plain, USA. Hydrogeology Journal. 25(8), 2403-2418.
  14. Halmy, M.W.A., Gessler, P.E., Hicke, J.A. and Salem, B.B., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography. 63, 101-112.
  15. Hejazy, I.R. and Kaloop, M.R., 2015. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment. 4(1), 117-124.
  16. Jahani shakib, F., Malek mohammadi, B., Yavari, A., Sharifi, Y. and Adeli, F., 2014. Assessment of wetland landscape changes in land use and climate change, with emphasis on the environmental impacts. Journal of Environmental Studies. 40(3), 631-643. (In Persian).
  17. Kumar, P.S., Elango, L. and James, E.J., 2014. Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arabian Journal of Geosciences. 7(7), 2641-2653.
  18. Li, Q., Qi, J., Xing, Z., Li, S., Jiang, Y., Danielescu, S., ... and Meng, F. R. 2014. An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater. Journal of Agriculture, ecosystems & environment, 196, 114-124.
  19. LUD, S., Mausel, P., Brondizio, E.S. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing. 25(12), 2365–2407.
  20. Milne, A.K., 1988. Change direction analysis using Landsat imagery: a review of methodology. Proceedings of the IGARSS’88 Symposium
  21. Edinburgh, Scotland, ESA SP-284 (Noordwijk, Netherlands: ESA): 541– 544.
  22. Mondal, A., Khare, D., Kundu, S. and Mishra, P.K., 2014. Detection of land use change and future prediction with Markov chain model in a part of Narmada River Basin, Madhya Pradesh. In Landscape Ecology and Water Management (pp. 3-14). Springer, Tokyo.
  23. Mondal, M., Karan, C. and Shukla, J., 2015. Changing pattern of land utilization: using remote sensing and GIS methods in Moyna Block, Purba Medinipur District, and West Bengal. Journal of Engineering Computers & Applied Sciences. 4(3), 87-96.
  24. Moreno de las Heras, M. and Gallart, F. 2017. The application of land morphology and lithology information optimizes remote sensing badland mapping using Landsat 8 and Sentinel 2 imagery in a heterogeneous regional setting, the upper Llobregat basin (Catalan Pyrenees). In EGU General Assembly Conference Abstracts 19, 13950-13950.
  25. Narany, T.S., Aris, A.Z., Sefie, A. and Keesstra, S., 2017. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Science of the Total Environment. 599, 844-853.
  26. Owuor, S.O., Butterbach-Bahl, K., Guzha, A.C., Rufino, M.C., Pelster, D.E., Diaz-Pines, E. and Breuer, L., 2016. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes. 5(1), 1-21.
  27. Poulami, P. and Bindu, B., 2012. A spatiotemporaland use change analysis of
  28. Waghodia Taluka using RS and GIS. Geoscience Research. 3 (2), 96-99.
  29. Pulido-Velazquez, M., Peña-Haro, S., Garcia-Prats, A., Mocholi-Almudever, A.F., Henriquez-Dole, L., Macian-Sorribes, H. and Lopez-Nicolas, A., 2015. Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain). Hydrology and Earth System Sciences. 19(4), 1677.-1693
  30. Rawat, J.S. and Kumar, M., 2015. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science. 18(1), 77-84.
  31. Robertson, W.M., Böhlke, J.K. and Sharp, J.M., 2017. Response of deep groundwater to land use change in desert basins of the Trans‐Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes. Hydrological Processes. 31(13), 2349-2364.
  32. Scanlon, B., Reedy, R., Tonestromw, D., Prudicz,
  33. D. and Dennehy, K., 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology. 11, 1577–1593.
  34. Sridhar, S.G.D., Balasubramanian, M. and Jenef, S., 2017. Assessment of groundwater quality of Tamil Nadu. Journal of Academia and Industrial Research. 5(11). 161-164
  35. Uddin, M.N., Anwar, M.F., Rahman, M.T. and Mobin, M.N., 2015. An investigation on the pattern of land use change in Dhaka City using remote sensing and GIS application. Journal of Environmental Science and Natural Resources. 7(2), 105-109.
  36. Venkatramanan, S., Chung, S.Y., Ramkumar, T., Gnanachandrasamy, G., Vasudevan, S. and Lee, S.Y., 2015. Application of GIS and hydrogeochemistry of groundwater pollution status of Nagapattinam district of Tamil Nadu, India. Environmental Earth Sciences. 73(8), 4429-4442.
  37. Wellman, T.P. and Rupert, M.G., 2016. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013 (No. 2016-5020). US Geological Survey.