برآورد ردپای اکولوژیکی تولیدهای بخش کشاورزی در کشورهای اسلامی گروه D-8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 گروه اقتصاد منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

 سابقه و هدف: گرمایش زمین بطور فزاینده­ای تعادل اکولوژیکی را تحت تاثیر قرار داده است. امروزه، فعالیت­ های انسانی و بویژه تولیدهای کشاورزی بدلیل انتشار گازهای گلخانه ­ای در اتمسفر زمین، عامل اصلی این پدیده محسوب می ­شوند. بر این اساس، در این مطالعه رابطه تولیدهای کشاورزی با محیط زیست برای کشورهای در حال توسعه اسلامی (گروه D-8) مورد بررسی قرار گرفت. برای این منظور از سطح زمین زراعی و شاخص تولیدهای دامی بعنوان معیار تولیدهای کشاورزی و از ردپای اکولوژیکی بعنوان معیار محیط زیستی استفاده شد.مواد و روش ­ها: بمنظور بررسی رابطه تولیدهای کشاورزی و محیط زیست یک مدل پنل طراحی و همچنین برآورد این رابطه برای 8 کشور عضو این گروه در دوره 1990 الی 2013 انجام شد. با توجه به آزمون ­های ایستایی و هم‌جمعی پنلی، روابط کوتاه‌مدت و بلندمدت به ترتیب با استفاده از روش تصحیح خطای برداری (ECM) و حداقل مربعات معمولی اصلاح شده (FMOLS) برآورد شدند.نتایج و بحث: نتایج مطالعه نشان داد که رابطه ردپای اکولوژیکی و تولید ناخالص داخلی سرانه بصورت N شکل بوده و از لحاظ آماری معنی ­دار است. بعلاوه، نتایج مطالعه گویای آن است که افزایش نسبی مصرف سرانه انرژی، زمین زراعی و تولیدهای دامی منجر به افزایش ردپای اکولوژیکی می­گردد. همچنین 10 درصد افزایش در زمین زراعی کشورهای گروه D-8 منجر به افزایش 15/2 درصدی در ردپای اکولوژیکی شده، حال آنکه 10 درصد افزایش در تولیدهای دامی منجر به افزایش 18/1 درصدی ردپای اکولوژیکی در بلند مدت می ­شود. بعلاوه، افزایش 10 درصدی در مصرف انرژی سبب افزایش 38/7 درصدی در ردپای اکولوژیکی می ­شود. نتیجه گ­یری: نتیجه اصلی مطالعه گویای آن است که فعالیت­ های کشاورزی یکی از عامل­ های ایجاد آلودگی ­های محیط زیستی بوده و بطور معنی ­داری بر ردپای اکولوژیکی در کشورهای گروه D-8 موثر هستند. همچنین، تولیدهای زراعی در مقایسه با تولیدها دامی اثرهای بزرگتری بر ردپای اکولوژیکی در بلند مدت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating the ecological footprint of agricultural production in D-8 Islamic countries

نویسندگان [English]

  • Mohammad Hassan Tarazkar 1
  • Navid Kargar Dehbidi 2
  • Zeinab shokoohi 1
1 Department of Agricultural Economics, Faculty of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Economics of Natural Resources and Environment, Faculty of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Introduction:
Global warming is increasingly affecting the ecological balance of the planet. Nowadays, human activities, especially agricultural productions, are thought to be mainly responsible for this phenomenon, as they have led to increasing concentrations of greenhouse gases (GHG) in the atmosphere. Therefore, the present study investigated the relationship between agricultural production and the environment in developing-8 (D-8) countries. To this end, the area of arable land and livestock production index were used as agricultural sector production indices and the ecological footprint (EF) indicator was used as an environmental index.
Material and methods:
A panel model for studying the agricultural production–environment was established. Also, the estimation of this relationship was conducted for all D-8 countries from 1990 to 2013. According to panel unit root tests and panel cointegration tests, the short and long-run relationships were estimated by Error Correction Model (ECM) and Fully Modified Ordinary Least Square (FMOLS), respectively.
Results and discussion:
The empirical results revealed that the relationship between EF and per capita Gross Domestic Production (GDP) was N-shaped and statistically significant. Moreover, the results imply that a relative increase in energy consumption, arable land, and livestock production had a positive effect on the EF. Evidence from the study showed that a 10% increase in crop production land will increase EF by 2.15%, while a 10% increase in the livestock production index will increase EF by 1.18% in the long-run. Furthermore, a 10% increase in energy consumption will increase EF by 7.38%.
Conclusion:
The main finding of this study was that agricultural activities are one of the most important environmental pollutants and have a significant effect on EF in D-8 countries. In addition, crop production has a larger effect on EF compare than livestock production in the long-run.

کلیدواژه‌ها [English]

  • ecological footprint
  • Arable land
  • Livestock production index
  • D-8 countries
  1. Akbostancı, E., Türüt-Aşık, S. and Tunç, G.İ., 2009. The relationship between income and environment in Turkey: is there an environmental Kuznets curve?. Energy Policy. 37(3), 861-867.
  2. Al-Mulali, U., Weng-Wai, C., Sheau-Ting, L. and Mohammed, A.H., 2015. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecological Indicators, 48, pp.315-323.
  3. Bagliani, M., Bravo, G. and Dalmazzone, S., 2008. A consumption-based approach to environmental kuznets curves using the ecological footprint indicator. Ecological Economics. 65, 650-651.
  4. Baltagi, B., 2008. Econometric Analysis of Panel Data, Third ed. John Wiley & Sons, England.
  5. Bimonte, S. and Stabile, A., 2017. Land consumption and income in Italy: a case of inverted EKC. Ecological Economic.131, 36–43.
  6. Charfeddine, L. and Mrabet, Z., 2017. The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews. 76, 138–154.
  7. Chow, G.C. and Li, J., 2014. Environmental Kuznets curve: conclusive econometric evidence for CO2. Pacific Economic Review. 19, 1–7.
  8. D-8 (Organisation for Economic Cooperation), 2017. Available online at: http://www .developing 8.org/.
  9. Dogan, E. and Seker, F., 2016. Determinants of CO2 emissions in the European Union: the role of renewable and non-renewable energy. Renewable Energy. 94, 429–39.
  10. Gujarati. A.N., 1999. Basic Econometrics. Translated by Abrishami H, Tehran, Tehran university press.
  11. Hervieux, M.S. and Darne, O., 2014. Production and consumption-based approaches for the Environmental Kuznets Curve in Latin America using ecological footprint. Document de Travail Working Paper.
  12. Im, K.S., Pesaran, M.H. and Shin, Y., 2003. Testing for unit roots in heterogeneous panels. Journal of Econometrics. 115(1), 53-74.
  13. Jansson, A.M., Hammer, M., Folke, K. and Costanza, R., 1994. Investing in Natural Capital. The Ecological Economics Approach to Sustainability, ISEE/Island Press, Washington, DC.
  14. Jomepour M., Hataminejad, H. and Shahanavaz. S., 2013. An investigation on sustainable development in Rasht province using ecological footprint. Human Geography Research Quarterly. 45(3), 191-208. (In Persian with English abstract).
  15. Jorgenson, A.K. and Clark, B., 2011. Societies consuming nature: a panel study of the ecological footprints of nations, 1960–2003. Social Science Research. 40(1), 226-244.
  16. Kaika, D. and Zervas, E., 2013. The environmental Kuznets curve (EKC) theory—Part A: concept, causes and the CO2 emissions case. Energy Policy. 62, 1392–402.
  17. Kao, C., 1999. Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics. 90(1), 1-44.
  18. Levin, A., Lin, C.F. and Chu, C.J., 2002. Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics. 108(1), 1–24.
  19. Lin, D., Hanscom, L., Martindill, J., Borucke, M., Cohen, L., Galli, A., Lazarus, E., Zokai, G., Iha, K., Eaton and Wackernagel, D.M., 2016. Working Guidebook to the National Footprint Accounts. Oakland: Global Footprint Network.
  20. Lopez- Menendez, A.J., Perez, R., and Moreno, B., 2014. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. Journal of Environmental Management. 145, 368-373.
  21. Mirzaei, A., Esfanjari Kenari, R., Mahmoodi, A. and Shabanzadeh, M., 2016. Shadow economy and its role in control of environmental damages of MENA countries. Economic Growth and Development Research. 6(24), 103-115: (In Persian with English abstract).
  22. Molaei, M. and Basharat, E., 2016. Investigating relationship between gross domestic product and ecological footprint as an environmental degradation index. Journal of Economic research. 50(4), 1017-1033. (In Persian with English abstract).
  23. Motafakker, M.A. and Mamipour, S., 2014. Economical - political analysis of barriers of natural resources abundance effect on economic growth. Applied Theories of Economics. 1(1), 97-124 : (In Persian with English abstract).
  24. Mrabet, Z. and Alsamara, M., 2017. Testing the Kuznets Curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint. Renewable and Sustainable Energy Reviews. 70, 1366–1375.
  25. Nijkamp, P., Rossi, E. and Vindigni, G., 2004. Ecological footprints in plural: a meta-analytic comparison of empirical results. Regional Studies. 38, 747-765.
  26. Pedroni, P., 2000. Fully Modified OLS for heterogeneous cointegrated panels. Department of Economics Working Papers 2000-03, Williams Collage.
  27. Pedroni, P., 2004. Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory. 20(03), 597-625.
  28. Razi, D., 2015. Assessment and analysis of ecological footprint (Case study: townships of Mazandaran Province). Shahri-HA. 3(10), 103-125: (In Persian with English abstract).
  29. Rees, W.E., 1996. Revisiting carrying capacity: Area-based indicators of sustainability, population and environment. Journal of Interdisciplinary
  30. Studies. 17(3), 195- 215.
  31. Saboori, B., Sulaiman, J. and Mohd, S., 2012. Economic growth and CO2 emissions in Malaysia: a cointegration analysis of the environmental Kuznets curve. Energy policy. 51, 184-191.
  32. Sameti, M., Ahmadzadeh, A. and Shahnazi R.A., 2007. The effects of natural resources on the economy of OPEC and some selected countries. Iran’s Economic Essays. 4(7), 55-74.
  33. Sarkodie, S.A. and Owusu, P.A., 2017. The relationship between carbon dioxide, crop and food production index in Ghana: By estimating the long-run elasticities and variance decomposition. Environmental Engineering. 22(2), 193-202.
  34. Shahbaz M., Lean, H.H. and Shabbir, M.S., 2012. Environmental Kuznets curve hypothesis in
  35. Pakistan: cointegration and Granger causality. Renew Sustain Energy Review. 16, 2947–53.
  36. Shahinifar, M. and Habibi, M., 2016. Locating the optimal model of urban green space using Fuzzy Logic and AHP, by GIS. Case study: the city of Mashhad. Environment Based Territorial Planning. 9(32), 41-62. (In Persian with English abstract).
  37. Some, T.E., Mbaye, A.A. and Barbier, B., 2017. Greenhouse Gas Emission Reduction in Agriculture: Trade‐off or Win–Win Situation for Small Farmers in the Sudanian Area of Burkina Faso?. African Development Review. 29(S2), 163-178.
  38. Teimouri, I., Salarvandian, F. and Ziari, K., 2014. Ecological footprint of carbon dioxide from fossil fuel in Shiraz city. Geographic Research Quarterly Journal. 29, 193-204. (In Persian with English abstract).
  39. Wackernagel, M., 1994. Ecological footprint and appropriated carrying capacity: a tool for planning toward sustainability. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philophy. University of British Colombia.
  40. Wang, J., Gardenas, L., Misselbrook, T. and Gilhespy, S., 2011. Development and application of a detailed inventory framework for estimating nitrous oxide and methane emissions from agriculture. Atmospheric Environment. 45, 1454-1463.
  41. WDI (World Development Indicators). 2017. Available online at: http://datatopics. worldbank. org/world-development-indicators/.
  42. Wiedmann, T., Minx, J., Barret, J. and Wackernagel, M., 2006. Allocating ecological footprints to final consumtion categories with input-output analysis. Ecological Economics. 56, 28-48.
  43. Xu, B., Lin, B., 2017. Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy. 104, 404–414.