توسعه مدل شبکه بیزین برای ریسک های محیطی موج شکن کاسپین بندر انزلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی فراوری و محیط زیست معدنی، دانشکدگان فنی، دانشگاه تهران، تهران، ایران

2 گروه آموزشی محیط زیست انسانی، دانشکده محیط زیست، سازمان حفاظت محیط زیست، تهران، ایران

چکیده

سابقه و هدف: مدیریت ریسک‌های محیط زیستی ناشی از تأسیسات دریایی نظیر موج‌شکن‌های دریای خزر از اهمیت ویژه‌ای برخوردار است. این تأسیسات در مناطقی حساس مانند دریای خزر، که یک اکوسیستم منحصر به فرد و بسیار آسیب‌پذیر دارد، می‌تواند منجر به تخریب محیط زیست و به خطر افتادن منابع طبیعی و سلامت انسانی شود. بنابراین، شناسایی و ارزیابی دقیق این ریسک‌ها و ارائه راهکارهای پیشگیرانه و کاهشی از اهمیت بالایی برخوردار است. پژوهش حاضر با هدف مدل‌سازی و تحلیل ریسک‌های زیست‌محیطی موج‌شکن کاسپین در بندر کاسپین انجام شده است. هدف این پژوهش، یافتن راه‌هایی برای پیشگیری و کاهش خطرات محیط زیستی ناشی از این سازه‌های دریایی و دستیابی به راهکارهای محلی برای کنترل ریسک‌های مرتبط است.
مواد و روش‌ها: در این پژوهش از روش تحلیل حالات شکست و اثرات آن (FMEA) برای ارزیابی ریسک‌های زیست‌محیطی استفاده شده است. این تکنیک به محققان امکان می‌دهد تا شدت خطر، احتمال وقوع و احتمال کشف هر ریسک را با دقت بیشتری بررسی و رتبه‌بندی کنند. برای تکمیل داده‌های این تحلیل، از نظرات متخصصان و کارشناسان حوزه‌های مرتبط استفاده شده است. پس از جمع‌آوری و تحلیل داده‌ها، نمره ریسک هر یک از عوامل شناسایی شده محاسبه شد و ریسک‌های بحرانی تعیین گردیدند. بالاترین ضریب اولویت در ریسک‌های غیر وابسته به انسان 384 و در ریسک‌های وابسته به انسان 126 بود. این اولویت‌ها به همراه فراوانی وقوع آن‌ها در نرم‌افزار Netica  و شبکه‌های بیزین برای مدل‌سازی دقیق‌تر ریسک‌های بحرانی وارد شدند. استفاده از شبکه‌های بیزین به تحلیل روابط متقابل بین ریسک‌ها و شناسایی وابستگی‌های پیچیده آن‌ها کمک کرد.
نتایج و بحث: نتایج حاصل از تحلیل‌ها نشان می‌دهد که در بین ریسک‌های وابسته به انسان، آسیب‌های پوستی با ارزش کمی 0/167 بالاترین خطر را تشکیل می‌دهند. علاوه بر این، آسیب‌های شنوایی به‌طور مستقیم با ارزش کمی 0/004 و آلودگی خاک با ارزش کمی 0/125 و آلودگی صوتی با ارزش کمی 0/004 به عنوان ریسک‌های غیرمستقیم بر سلامت انسان تأثیر می‌گذارند. این نتایج نشان می‌دهد که آلودگی خاک و آلودگی صوتی بعنوان ریسک‌های غیرمستقیم اثرات بیشتری بر سلامت انسان دارند. در بخش ریسک‌های غیر وابسته به انسان، استفاده از مواد ناریه با ارزش کمی 0/024، آلودگی آب با ارزش کمی  224/0و تخریب منابع طبیعی ناشی از استخراج و تأمین مصالح از معادن قرضه با ارزش کمی 0/764 از بحرانی‌ترین ریسک‌ها شناسایی شدند. تحلیل‌های بیزین نشان داد که وابستگی متقابل بین ریسک‌ها به‌طور واضحی قابل مشاهده است؛ به‌طوری که برخی از ریسک‌ها منجر به افزایش یا کاهش احتمال وقوع سایر ریسک‌ها می‌شوند.
نتیجه‌گیری: تحلیل‌های بیزین به‌طور مؤثری نشان داد که چگونه وابستگی بین ریسک‌ها و تأثیرات متقابل آن‌ها می‌تواند منجر به پیچیدگی بیشتر در مدیریت ریسک‌های زیست‌محیطی شود. نتایج این پژوهش نشان می‌دهد که استفاده از مدل‌های پیشرفته مانند شبکه‌های بیزین در تحلیل ریسک‌های زیست‌محیطی برای دستیابی به نتایج دقیق‌تر و مدیریت جامع‌تر ضروری است. به گونه ای که این مدل‌ها نه تنها به شناسایی و تحلیل ریسک‌های بحرانی کمک می‌کنند، بلکه امکان پیش‌بینی و کنترل بهتر ریسک‌ها را نیز فراهم می‌آورند.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a Bayesian Network Model for Environmental Risks of the Caspian Sea Breakwater in Bandar Anzali

نویسندگان [English]

  • Hamid Sarkheil 1
  • Seyed Ahmad Khobraftar Shalkohi 2
  • Ziauddin Almasi 2
1 Department of Mineral Processing and Mining Environment, College of Engineering, University of Tehran, Tehran, Iran
2 Department of Human Enviornment, College of Environment, Department of Environment (DOE), Tehran, Iran
چکیده [English]

Introduction :Managing environmental risks associated with marine installations, such as the breakwaters of the Caspian Sea, plays a critical role in mitigating potential hazards and ensuring sustainable development. The Caspian Sea, a unique and environmentally sensitive region, faces significant ecological risks due to construction and operational activities related to breakwaters. This study aims to model and analyze the environmental risks specifically related to the breakwater located in the Caspian Port. By comprehensively identifying the various activities and processes during both the construction and operation phases, this research seeks to uncover potential hazards and damaging factors. The ultimate objective is to provide a framework for preventing or minimizing these risks, thus contributing to the long-term environmental sustainability of the region.
Material and Methods: In this research, the Failure Modes and Effects Analysis (FMEA) method was employed to evaluate the environmental risks. FMEA is a widely used risk assessment tool that helps in determining the severity, likelihood of occurrence, and detectability of risks. Expert opinions were collected to assess these factors for each identified risk. Following this evaluation, the risk priority number (RPN) was calculated, which helped identify the critical risks requiring immediate attention. The highest RPN for non-human-related risks was 384, while for human-related risks, it was 126. These priority levels were further analyzed using Bayesian networks through the Netica software, a tool known for efficiently modeling risk interdependencies.
Results and Discussion: The analysis of human-related risks revealed that skin damage posed the highest risk, with a quantitative value of 0.167. Direct auditory impairments were less significant, with a value of 0.004, while indirect human risks included soil pollution (0.125) and noise pollution (0.004). These findings indicate that while direct physical harm to individuals may not be highly prevalent, indirect risks, especially related to environmental degradation, hold substantial importance. On the other hand, in the category of non-human-related risks, the most critical hazard was identified as the depletion of natural resources due to mining activities, with a high quantitative value of 0.764. Water pollution (0.224) and the use of hazardous substances (0.024) were also identified as key risks impacting the environment. The Bayesian network analysis effectively highlighted the interconnections between these risks, revealing how the occurrence of one risk could amplify others, demonstrating a web of interdependent risk factors.
Conclusion: The results underscore the significance of understanding the interdependence of risks when addressing environmental challenges in marine construction projects. The use of Bayesian networks in this study clearly demonstrated the mutual influence between different risk factors, emphasizing the need for an integrated risk management approach. By identifying critical risks and understanding their interdependencies, decision-makers can implement targeted and localized solutions to mitigate these risks.

کلیدواژه‌ها [English]

  • Breakwater
  • Caspian Port
  • Bayesian Networks
  • Netica
Banan, M., Shokatian-Beiragh. M., Golshani, A. and Abdi, A., 2023. “Use of a Bayesian Network for Storm-Induced Flood Risk Assessment and Effectiveness of Ecosystem-Based Risk Reduction Measures in Coastal Areas (Port of Sur, Sultanate of Oman)”. Ocean Engineering, 270, 113662. https://doi.org/10.1016/j.oceaneng.2023.113662.
Borsuk, M., Stow, C. and Reckhow, K., 2004. “A Bayesian Network of Eutrophication Models for Synthesis, Prediction, and Uncertainty Analysis. Ecological Modelling”, 173 (2), 219–239. https://doi.org/10.1016/j.ecolmodel.2003.08.020.
Box, G.E.P., Meyer, R.D., 1986. “An Analysis for Unreplicated Fractional Factorials”. Technometrics. 28 (1): 11–18. doi:10.1080/00401706.1986.10488093
De Groot, K., and Thurik R., 2018. “Disentangling Risk and Uncertainty: When Risk-Taking Measures Are Not About Risk”. Frontiers. V.  9. https://doi.org/10.3389/fpsyg.2018.02194
Durap, A., Balas, C., Çokgör, Ş.  and Balas, E., 2023. “An Integrated Bayesian Risk Model for Coastal Flow Slides Using 3-D Hydrodynamic Transport and Monte Carlo Simulation”. Journal of Marine Science and Engineering, 11 (5), 943. https://doi.org/10.3390/jmse11050943.
Ehsani Moghadam, R., Shafieefar,  M. and Akbari, H., 2022. “A Probabilistic Approach to Predict Wave Force on a Caisson Breakwater Based on Bayesian Regression and Experimental Data”. Ocean Engineering, 249, 110945. https://doi.org/10.1016/j.oceaneng.2022.110945.
Ehsani Moghadam, R., Shafieefar,  M. and Akbari, H., 2021. “Reliability-Based Analysis of a Caisson Breakwater with the Application of Bayesian Inference”. J. Marine. Sci. Appl., 20 (4), 735–750. https://doi.org/10.1007/s11804-021-00237-8.
Eldin, N., Eldrandaly, K. A., 2004. “Computer-Aided System For Site Selection of Major Capital Investment”, ASCAAD International Conference, e-Design in Architecture Dhahran, Saudi Arabia. December
Garzon, J., Ferreira, Ó, Zózimo, A., Fortes, C. J., Ferreira, A., Pinheiro, L.  and Reis, M. T.,  2023. “Development of a Bayesian Networks-Based Early Warning System for Wave-Induced Flooding”. International Journal of Disaster Risk Reduction 2023. 96, 103931. https://doi.org/10.1016/j.ijdrr., 103931.
Gibbs, M., 2004. “Application of a Bayesian Network Model and a Complex Systems Model to Investigate Risks of a Proposed Aquaculture Development on the Carrying Capacity of Shorebirds at the Miranda Ramsar Wetland. Waikato Regional Council”. https://www.waikatoregion.govt.nz/services/publications/tr200704/
Greiner, M.,  Smid, J. and  Havelaar, A., 2013. Graphical models and Bayesian domains in risk modelling: application in microbiological risk assessment - PubMed. https://pubmed.ncbi.nlm.nih.gov/23482086
Hardy, T. and Wu, W., 2020. “Impact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysis”, Environmental Monitoring and Assessment. https://link.springer.com/article/10.1007/s10661-020-08746-9.
Joozi, A., Haghighi Far, N., & Afzali Nezhad, N., 2014. "Identification and Evaluation of Risks Arising from High Voltage Power Transmission Lines in Residential Areas Using Failure Mode and Effects Analysis (FMEA) Method." Journal of Health and Environment. 7 (1) : 55-64.
Jung, M., Kim, J., Lee,  B. and Kwon, H., 2021. “Exploring the Combined Risk of Sea Level Rise and Storm Surges Using a Bayesian Network Model: Application to Saemangeum Seawall”. Journal of Coastal Research, 114 (SI), 186–190. https://doi.org/10.2112/JCR-SI114-038.1.
Kolyvand, P., 2015. "Identifying deficiencies and solutions to enhance safety of non-convention floaters to Imam Khomeini port (RAH)." In Proceedings of the 11th International Conference on Coasts, Ports, and Marine Structures, https://sid.ir/paper/826065/fa
Kibria, G., Water, G., 2012. Environmental/Ecological Risk Assessment (ERA) Model for Assessing Risks in Irrigation Areas (River, Creeks, Channels, Drains) of Toxicants (Pesticides, Herbicides and Trace Metals) to Various Receptors, P. 42.
Lee, C. J.  and Lee K. J.,  2006. “Application of Bayesian Network to the Probabilistic Risk Assessment of Nuclear Waste Disposal. Reliability Engineering & System Safety’, 91, 515–532. https://doi.org/10.1016/j.ress.2005.03.011.
Lein, JK., 2008. “Integrated Environmental Planning”; John Wiley & Sons. P. 124
Li, X., Peng, M., Dong, S., Liu, S., Li, J. and Yang, Z., 2013. “Ecological risk assessment of hydropower dam construction on aquatic species in middle reaches of Lancang River, Southwest China based on ESHIPPO model”. Ying Yong Sheng Tai Xue Bao 2013, 24 (2), 517–526.
Ma, W. J., Pouget, A., 2009. “Population Codes: Theoretic Aspects, Encyclopedia of Neuroscience”, Academic Press, Pages 749-755, https://doi.org/10.1016/B978-008045046-9.01401-7.
Mccloskey, J., Cronan, C., 2011. “Using Bayesian Belief Networks to Identify Potential Compatibilities and Conflicts between Development and Landscape Conservation. Landscape and Urban Planning”, 101, 190–203. https://doi.org/10.1016/j.landurbplan.2011.02.011.
Pham, H., Dal Barco M., Pourmohammad Shahvar, M., Furlan, E., Critto, A. and Torresan, S., 2024. “Bayesian Network Analysis for Shoreline Dynamics, Coastal Water Quality, and Their Related Risks in the Venice Littoral Zone, Italy”. Journal of Marine Science and Engineering, 12 (1), 139. https://doi.org/10.3390/jmse12010139.
Pollino, C. A. and Hart, Barry T., 2008. "Developing Bayesian network models within a Risk Assessment framework". International Congress on Environmental Modelling and Software. 55. https://scholarsarchive.byu.edu/iemssconference/2008/all/55
Qazi, A., Quigley, J., Dickson, A., Kirytopoulos, K., 2016. “Project Complexity and Risk Management (ProCRiM): Towards Modelling Project Complexity Driven Risk Paths in Construction Projects”. International journal of project management, 34 (7), 1183–1198.
Qu, C.S., Chen. J., Huang Li, F., 2011. “Ecological risk assessment of pesticide residues in Taihu Lake wetland”,https://www.researchgate.net/publication/223566138_Ecological_risk_assessment_of_pesticide_residues_in_Taihu_Lake_wetland_China.
Sarkheil, H., Azimi, Y. and Jafari Aghdash, J., 2019. “Fault Creator Cases Analysis Based on Bayesian Method in Current Permit to Work System to Optimize the Protection Layers and Risk Management, During Commissioning and Start-up Phases of Gas Refinery Plant”. International Journal of Occupational Hygene. 11(2), 70-84.
Sarkheil, H., Torabi, P., Hassani, H., 2023. “Environmental Risk Modeling of Hydrocarbon Exploration and Exploitation using Energy Trace Barrier Assessment Method, the case study of Tabnak Hydrocarbon Field”, Journal of oil and gas exploration and production; (206):41-48. URL: http://ekteshaf.nioc.ir/article-34581-1-fa.html  (In Persian).
Zolfaghari Far, Y. and Torang, F., 2016. "A review of the history and types of breakwaters." In Proceedings of the National Conference on Technology and Technology in Civil Engineering, Architecture, Electrical, and Mechanical Engineering, 3 to 5 December, (Tehran, Iran), pp. 436-439.