ارزیابی تطبیقی نمایه های خشکسالی استنتاجی از داده های سنجش از دور و هواشناسی در میانه غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیای طبیعی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 دانشکده منابع طبیعی، مجتمع آموزش عالی سراوان، سراوان، ایران

3 گروه جغرافیا و سیستم اطلاعات جغرافیایی، دانشکده علوم انسانی و اجتماعی، دانشگاه گلستان، گلستان، ایران

چکیده

سابقه و هدف: خشکسالی بعنوان یکی از مخاطرات طبیعی عمده، بر محیط زیست، جامعه، کشاورزی و اقتصاد تأثیر می­ گذارد. نمایه­ های متعددی برای کمی­ سازی خشکسالی بر مبنای داده­ های زمینی و سنجش از دور توسعه یافته­ اند. روش ­های سنتی کمی ­سازی خشکسالی مبتنی بر داده­ های هواشناسی و معیارهای قراردادی بوده و معمولاً در زمان واقعی نزدیک در دسترس نمی­ باشند. از سوی دیگر، داده ­های مبتنی بر سنجش از دور، پیوسته در دسترس بوده و می ­توانند برای تشخیص چندین جنبه و مشخصه خشکسالی مورد استفاده قرار گیرند. هدف از این پژوهش، بررسی و مقایسه نمایه ­های مختلف استنتاجی از داده ­های سنجش از دور و هواشناسی برای پایش خشکسالی مقیاس محلی (بخش شرقی استان کردستان) می­ باشد.
مواد و روش­ ها: هفت شاخص خشکسالی مقایسه شده شامل شاخص وضعیت پوشش گیاهی (VCI)، شاخص خشکی پوشش گیاهی (VDI)، شاخص سلامت پوشش گیاهی (VHI)، شاخص ذخیره آب پوشش گیاهی (VSWI)، شاخص پوشش گیاهی تفاوت نرمال شده (NDVI)، شاخص وضعیت دمایی (TCI) و شاخص بارش استاندارد (SPI) می ­باشند. شاخص ­های سنجش از دور از داده ­های مودیس استنتاج شده است. شاخص هواشناسی SPI از تلفیق داده ­های ایستگاه ­های باران­سنجی و بارش شبکه ­بندی شده حاصل شده است. نقشه ­های رقومی شاخص ­های هفت­گانه خشکسالی برای دوره 2021 - 2002 با تفکیک زمانی مشابه (16 روزه) تهیه شده ­اند. برای تجزیه و تحلیل ویژگی­ های هر شاخص خشکسالی از روش مقایسه ­ای شامل انتخاب دوره ­های خاص از خشکسالی رخ داده و ویژگی­ های شناسایی خشکسالی فضایی استفاده گردیده است. مقایسه شاخص­ های خشکسالی در ماه اردیبهشت انجام گردیده که زمان رویشی است. در نهایت، از تجزیه و تحلیل همبستگی پیرسون برای ارزیابی تشابه رفتاری شاخص­ ها استفاده گردیده است.
نتایج و بحث: تحلیل مقایسه ­ای فضایی بین شاخص ­های خشکسالی نشان داد که همه شاخص ­ها در توزیع مقیاس منطقه ­ای خشکسالی انطباق معین دارند؛ به ویژه آن­هایی که از مجموعه داده ­های مشابه مشتق شده­ اند. در­حالی­که، آشکارا تفاوت توزیع مقیاس محلی در میان گروه ­های مختلف شاخص ­ها یافت شد. نتایج نشان داد که روند کلی شاخص ذخیره آب پوشش گیاهی انطباق بهتری با شاخص بارش استاندارد شده دارد. بر اساس تحلیل همبستگی، اثبات گردید که شاخص ذخیره آب پوشش گیاهی می­ تواند بازتاب بهتری از میزان بارندگی و شدت خشکسالی به دلیل کمبود بارندگی باشد. علاوه بر این، دمای سطح زمین (LST)، بیشتر از اطلاعات بازتابی به نتایج شاخص پیوندی (VSWI) کمک می­کند. یک تأخیر 32 روزه از شاخص­ های بیانگر وضعیت پوشش گیاهی به خوبی بیانگر شرایط خشکسالی هواشناسی در منطقه مورد مطالعه است. نبود و کمبود بارندگی در حداقل پنج دوره (80 روز) قبل­تر می­ تواند بر وضعیت پوشش گیاهی در شرایط موجود تأثیر جدی داشته باشد. مناطق دشتی و پایکوهی واقع در بخش­های مرکزی، شرقی و جنوب­ شرقی منطقه مورد مطالعه با غلبه کشاورزی غلات به ویژه کشت دیم، نسبت به شرایط خشکسالی حساس­تر از سایر قسمت­ ها می ­باشند.
نتیجه ­گیری: علیرغم مزیت­ های فراوان شاخص ­های خشکسالی سنجش از دوری در تجزیه و تحلیل خشکسالی در زمان نزدیک به واقع، همچنان شاخص­ های خشکسالی هواشناسی در اولویت پایش خشکسالی می­ باشند. این جایگاه ناشی از وابستگی سیستم ­های هیدرولوژیکی و کشاورزی به شرایط هواشناسی است. عمدتاً این سیستم­ های هیدرولوژیکی و کشاورزی در مناطق مختلف با تأخیر زمانی متفاوت به نوسانات هواشناسی پاسخ می ­دهند. درک این روابط پیچیده میان سیستم­ های هواشناسی، هیدرولوژیکی و کشاورزی می ­تواند در برنامه ­های آمادگی زودهنگام در برابر خشکسالی و مدیریت آن مفید واقع گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of remotely sensing and meteorological data-derived drought indices in mid-western Iran

نویسندگان [English]

  • Hamid Nazaripour 1
  • Hossein Jahantigh 2
  • Mokhtar Jafari 3
1 Department of Physical Geography, University of Sistan and Baluchestan, Zahedan, Iran
2 Faculty of Natural Resources, Higher Education Complex of Saravan, Saravan, Iran
3 Department of Geography and Geographical Information Systems, Faculty of Humanities and Social Sciences, Golestan University, Golestan, Iran
چکیده [English]

Introduction: Drought, as one of the major natural hazards, affects the environment, society, agriculture and economy. Several indices have been developed for drought quantification based on ground data and remote sensing. Traditional drought quantification methods are based on meteorological data and conventional criteria and are usually not available in near real- time. On the other hand, data based on remote sensing are continuously available and can be used to detect several aspects and characteristics of drought. The purpose of this research is to investigate and compare different indices derived from remote sensing and meteorological data for local scale drought monitoring (eastern part of Kurdistan Province).
Material and methods: Seven drought indices were compared, including Vegetation Condition Index (VCI), Vegetation Drought Index (VDI), Vegetation Health Index (VHI), Vegetation Supply Water Index (VSWI), Normalized Difference Vegetation Index (NDVI), Temperature Condition Index (TCI) and Standardized Precipitation Index (SPI). Remote sensing indicators are derived from MODIS data. The meteorological index SPI is obtained by combining the data of rain gauge stations and gridded precipitation data. The digital maps of the seven drought indicators have been prepared for the period of 2002-2021 with the same time interval (16-days). To analyze the characteristics of each drought index, a comparative method including the selection of specific periods of drought and spatial drought identification characteristics has been used. The comparison of drought indicators was done May, which is the growing season. Finally, Pearson's correlation analysis was used to evaluate the behavioral similarity of the indicators.
Results and discussion: The spatial comparative analysis between the drought indicators showed that all the indicators had certain adaptations in the distribution of the regional scale of drought, especially those derived from similar data sets. Meanwhile, the difference in local scale distribution was found among different groups of indicators. The results showed that the general trend of the VSWI had a better compliance with the standardized precipitation index. Based on the correlation analysis, it was proved that the VSWI  can be a better reflection of the amount of rainfall and the severity of drought due to the lack of rainfall. In addition, the land surface temperature (LST) contributes more to the VSWI results than the reflectance information. A two-period (32-day) delay of the indicators indicating the state of vegetation is a good indicator of the meteorological drought conditions in the study area. The absence and lack of rainfall in at least five periods (80 days) earlier can had a serious effect on the state of vegetation in the existing conditions. Plain and mountainside areas located in the central, eastern and south-eastern parts of the study area were more sensitive to drought conditions than other parts due to the dominance of grain farming, especially rainfed farming.
Conclusion: While remote sensing drought indicators have many advantages in the analysis of drought in real-time, meteorological drought indicators are still the priority for drought monitoring. This is due to the dependence of hydrological and agricultural systems on meteorological conditions. Mainly, these hydrological and agricultural systems in different regions respond to meteorological fluctuations with different time delays. Understanding these complex relationships between meteorological, hydrological and agricultural systems can be useful in early preparation programs against drought and its management.

کلیدواژه‌ها [English]

  • Drough t Analysis
  • Remote Sensing
  • Vegetation Supply Water Index (VSWI)
  • Standardised Precipitation Index (SPI)
  • Vegetation Health Index (VHI)
Akbar, T.A., Hassan, Q.K., Ishaq, S., Batool, M., Butt, H.J. and Jabbar, H., 2019. Investigative spatial distribution and modelling of existing and future urban land changes and its impact on urbanization and economy. Remote Sensing. 11(2), 105.
Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C. and Tucker, C.J., 2006. A comparative study of NOAA–AVHRR derived drought indices using change vector analysis. Remote Sensing of Environment. 105(1), 9-22.
Bhuiyan, C. and Kogan, F.N., 2010. Monsoon variation and vegetative drought patterns in the Luni Basin in the rain-shadow zone. International Journal of Remote Sensing. 31(12), 3223-3242.
Brown, J.F., Wardlow, B.D., Tadesse, T., Hayes, M.J. and Reed, B.C., 2008. The vegetation drought response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience and Remote Sensing. 45(1), 16-46.
Carolwicz, M., 1996, Nature hazards need not lead to natural disasters. EOS77. 16, 149–153.
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B. and Eklundh, L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote sensing of Environment. 91(3-4), 332-344.
Darand, M., 2018. Spatial analysis of precipitation persistency in Kurdistan Province. Geography and Development. 16(52), 247-266.
Fensholt, R. and Proud, S.R., 2012. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment. 119, 131-147.
Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S.D., Tucker, Cand Wessels, K., 2012. Greenness in semi-arid areas across the globe 1981–2007—an earth observing satellite based analysis of trends and drivers. Remote Sensing of Environment. 121, 144-158.
Gillies, R.R., Kustas, W.P. and Humes, K.S., 1997. A verification of the'triangle'method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. International Journal of Remote Sensing. 18(15), 3145-3166.
Gu, Y., Hunt, E., Wardlow, B., Basara, J.B., Brown, J.F. and Verdin, J.P., 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters. 35(22).
Guttman, N. B., 1999. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association. 35(2), 311-322.
Hagman , G. (Ed.)., 1984. Prevention Better than Curve: Report on Human Natural Disasters in the Third World (Stockholm: Swedish Red Cross).
Hamzeh, S., Farahani, Z., Mahdavi, S., Chatrobgoun, O. and Gholamnia, M., 2017. Spatio-temporal monitoring of agricultural drought using remotely sensed data (Case study of Markazi province of Iran). Journal of Spatial Analysis Environmental Hazarts. 4(3), 53-70.
Ji, L., & Peters, A. J., 2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment. 87(1), 85-98.
Ji, L., & Peters, A. J., 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment. 87(1), 85-98.
Kallis, G., 2008, Droughts. Annual Review of Environment and Resources. 33,  85–118.
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., and Goldberg, A., 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate. 23(3), 618-633.
Keyantash, J. and Dracup, J.A., 2002. The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society. 83(8), 1167-1180.
Kogan, F.N., 1995. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research. 15(11), 91-100.
Kogan, F.N., 2000. Contribution of remote sensing to drought early warning. Early Warning Systems for Drought Preparedness and Drought Management. 75-87.
McKee, T.B., Doesken, N.J. and Kleist, J., 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17th-22th January, Anaheim, California, United States. pp. 179-183.
McVicar, T. R. and Bierwirth, P. N., 2001. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. International Journal of Remote Sensing. 22(11), 2109-2128.
McVicar, T.R. and Bierwirth, P.N., 2001. Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. International Journal of Remote Sensing. 22(11), 2109-2128.
Mottram, R., De Jager, J. M. and Duckworth, J. R., 1983. Evaluation of a water stress index for maize using an infra-red thermometer. Crop Production. 12, 26–28.
Nejadrekabi, M., Eslamian, S. and Zareian, M. J., 2022. Spatial statistics techniques for SPEI and NDVI drought indices: A case study of Khuzestan Province. International Journal of Environmental Science and Technology. 19(7), 6573-6594.
Nemani, R., Pierce, L., Running, S and Goward, S., 1993. Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology and Climatology. 32(3), 548-557.
Rahimi, J., Ebrahimpour, M. and  Khalili, A., 2013. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and applied climatology. 112, 409-418.
Rezaeimoghadam, M., Valizadeh Kamran, K., Rostamzadeh, H. and Rezaee, A. 2013. Evaluating the adequacy of MODIS in the assessment of drought (Case study: Urmia Lake Basin). Geography and Environmental Sustainability. 2(4), 37-52.
Son, N. T., Chen, C. F., Chen, C. R., Chang, L. Y. and Minh, V. Q., 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation. 18, 417-427.
Sruthi, S. and Aslam, M. M., 2015. Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia. 4, 1258-1264.
Sun, H., Zhao, X., Chen, Y., Gong, A. and Yang, J., 2013. A new agricultural drought monitoring index combining MODIS NDWI and day–night land surface temperatures: A case study in China. International Journal of Remote Sensing. 34(24), 8986-9001.
Sun, W., Wang, P. X., Zhang, S. Y., Zhu, D. H., Liu, J. M., Chen, J. H. and Yang, H. S., 2008. Using the vegetation temperature condition index for time series drought occurrence monitoring in the Guanzhong Plain, PR China. International Journal of Remote Sensing. 29(17-18), 5133-5144.
Thenkabail, P. S. and Gamage, M. S. D. N., 2004. The use of remote sensing data for drought assessment and monitoring in Southwest Asia. International; water management institute, Colombo, Sri Lanka.
Vogt, J.V., Niemeyer, S., Somma, F., Beaudin, I., Viau, A. A., 2000. Drought Monitoring from Space. In: Vogt, J.V., Somma, F. (eds) Drought and Drought Mitigation in Europe. Advances in Natural and Technological Hazards Research, vol 14. Springer, Dordrecht.
Wilhite, D. A. and Glantz, M. H.,1985. Understanding: the drought phenomenon: the role of definitions. Water international. 10(3), 111-120.
Wilhite, D. A., Svoboda, M. D. and Hayes, M. J., 2007. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water resources management. 21, 763-774.
Yun-Hao, C. H. E. N., Xiao-Bing, L. I., Pei-Jun, S. H. I., Wen, D. O. U., and Xia, L. I., 2003. Intra-annual vegetation change characteristics in the NDVI-Ts space: application to farming-pastoral zone in North China. Journal of Integrative Plant Biology. 45(10), 1139-1145.
Zhou, L., Zhang, J., Wu, J., Zhao, L., Liu, M., Lü, A. and Wu, Z., 2012. Comparison of remotely sensed and meteorological data-derived drought indices in mid-eastern China. International Journal of Remote Sensing. 33(6), 1755-1779.