Original Article
Soolmaz Shamsaie; Mozhgan Ahmadi Nadoushan; Ahmad Jalalian
Abstract
Introduction: Industrialization, urbanization, and population growth are considered as the main causes of urban air pollution that is responsible for millions of deaths per year worldwide. Besides, the impact of urban air pollution on health is considerable. Respiratory and lung diseases, and heart attacks ...
Read More
Introduction: Industrialization, urbanization, and population growth are considered as the main causes of urban air pollution that is responsible for millions of deaths per year worldwide. Besides, the impact of urban air pollution on health is considerable. Respiratory and lung diseases, and heart attacks are largely due to urban air pollution. However, there is a lack of air pollution monitoring stations (hereafter stations) in most cities worldwide because of their high expenses, and, thus, access to high spatial and temporal coverage of air pollutants and their distribution is limited. To address this issue, the main purpose of this study was to estimate CO concentration in Isfahan, Iran, based on air pollution monitoring stations and Moderate Resolution Imaging Spectroradiometer (MODIS) data from 2018 to 2019. Material and methods: In the present work, we used adaptive neuro-fuzzy inference system )ANFIS( and Random Forest (RF) algorithms to estimate CO concentrations. To implement the ANFIS algorithm, based on collected air pollution data from the stations and Aerosol Optical Depth (AOD) data from MODIS imagery, the basic fuzzy rules were extracted. Further, with the integration of fuzzy rules and artificial neural network algorithm, ANFIS algorithm was implemented to model the dispersion of CO level in Isfahan city. To model the dispersion of CO using the RF algorithm, air pollution data and AOD data were used. Since the number of trees and the number of variables in each node are two basic parameters in the success of the RF algorithm, a 10-fold cross-validation method was used to identify value for these two variables.Results and discussion: Our findings indicated that the RF algorithm was more efficient and accurate in spatial modeling the dispersion of CO because it achieved better RMSE and MAE results than the ANFIS algorithm. The RMSE error value of the RF and ANFIS algorithms were 0.724 and 0.809 ppm, respectively. Furthermore, the MAE error value of the RF and ANFIS algorithms were 0.636 and 0.792 ppm, respectively. In the case of spatial dispersion of CO pollutants, the ANFIS algorithm showed that the amount of this pollutant varies in the city. For example, the central and northern regions of Isfahan had the most pollution and the eastern and western regions of Isfahan had the least pollution based on the ANFIS algorithm. Regarding the RF algorithm, it was observed that by moving from the southeast to the northwest of Isfahan, the amount of CO pollutant increases, and the northwestern regions of Isfahan had the highest CO pollution. The examination of numerical values obtained from the ANFIS algorithm showed that the lowest amount of CO pollution in Isfahan city was equal to 1.43 ppm and the highest amount was 2.13 ppm. In contrast, obtained results from the RF algorithm showed that the lowest amount of CO pollution in the city was equal to 0.57 ppm and the highest amount was 2.27 ppm.Conclusion: Overall, it can be concluded that since ANFIS and RF algorithms are appropriate and accurate methods in modeling environmental problems due to their nonlinear modeling, the ability to reduce the negative effects of outgoing data, and less sensitivity to the local minimum problem. It should be noted that a significant part of the error observed in the results of ANFIS and RF methods was related to the intrinsic properties of MODIS imagery (i.e., cloud cover and mixed pixel problem due to the coarse resolution of MODIS imagery), point measurements of air pollution data collected from the stations, and recorded data error at the stations.
Original Article
Parisa Mashayekhi; Hosein Sharifi
Abstract
Introduction: In recent years, the increased water, soil, and environmental degradation, due to the excessive use of chemicals, has encouraged researchers into organic farming. Despite all the positive effects associated with the consumption of sewage sludge and municipal compost on the soil physical ...
Read More
Introduction: In recent years, the increased water, soil, and environmental degradation, due to the excessive use of chemicals, has encouraged researchers into organic farming. Despite all the positive effects associated with the consumption of sewage sludge and municipal compost on the soil physical and chemical properties, there is still a great concern in terms of the environment, agriculture and health. Depending on the source, composts often contain relatively large amounts of heavy metals, and thus accurate measurement of heavy metal contents in these compounds is important.Material and methods: In this study, 20 compost samples from different sources, including manure, municipal waste and sewage sludge sources were selected. Five methods of digestion in three replicates were used to extract the heavy metals of the compost samples, including nitric acid, dry ashing, nitric–perchloric acid, sulfuric acid and sulfosalicylic acid methods. The elements were Cd, Pb, Ni, Cr, Co, Cu, Zn, Mn, and Fe.Results and discussion: Analytical results indicated that the nitric–perchloric acid procedure was the most efficient for recovering Cd, Pb and Cr from the organic samples. After that, dry ashing method extracted the highest amount of Cd, Pb and Cr from all compost samples (on average). Since perchloric acid is potentially hazardous during digestion procedure, dry ashing was recommended as an alternative method. The recovery of Cd and Pb in the organic compounds is affected not only by the digestion method, but also by the type of compost. For example, the nitric–perchloric acid procedure recovered more Cd and Pb from municipal waste and sewage sludge than manure and Poultry fertilizers. In the case of other elements including Ni, Co, Cu, Mn, Zn and Fe, sulfosalicylic acid has the highest efficiency in extracting these elements from compost samples. Extraction of these elements was only affected by the type of extraction method and the type of organic composition had no effect on it.Conclusion: Different digestion methods and also different compost sources that were tested had a very significant effect on the extraction of all heavy metals. Despite the fact that the organic compounds used in this experiment had a relatively wide range in terms of various structural and chemical properties, the digestion methods used for the heavy and micronutrient elements in these compounds had a relatively specific trend in terms of the extraction potential of these elements. In general, in the case of heavy metals, Cd, Pb and Cr, nitric acid + perchloric acid and then dry digestion method, had the best efficiency in extracting these elements. For the other elements including Ni, Co, Cu, Mn, Zn and Fe, sulfosalicylic acid was the most effective in extracting these elements from compost samples.
Original Article
Neda Mirikaram; Amir Salemi; Maryam Vosough
Abstract
Introduction: pharmaceuticals, personal care products and steroid hormones are emerging pollutants whose main production source is human societies. Municipal wastewater treatment plants have a very effective role in reducing and eliminating these pollutants, however, complete elimination of these compounds ...
Read More
Introduction: pharmaceuticals, personal care products and steroid hormones are emerging pollutants whose main production source is human societies. Municipal wastewater treatment plants have a very effective role in reducing and eliminating these pollutants, however, complete elimination of these compounds is usually not possible and some of these pollutants are treated through the treated wastewater stream (as well as residual sludge) and enter the environment. Due to the use of treated wastewater in the irrigation of fields and orchards, there is a possibility of transferring contaminants to soil, crops, and groundwater. Since the negative effect of the presence of these contaminants is visible in very low concentrations, it is necessary to identify and determine their amount.Material and methods: In this study, the transfer channel of the treatment plant in the south of Tehran (raw wastewater, treated wastewater), farm soil, and crops in terms of the presence and amount of emerging organic pollutants, from the category of pharmaceuticals and steroid hormones have been studied. Four samplings of treated wastewater were performed in different places. First, qualitative analysis was performed to identify and select target pollutants (for quantitative measurement). Then, the most important quality assurance and control criteria in the field and laboratory were studied so that the data generated had the highest possible level of quality. Finally, each sample for each category of pollutants was separately prepared and extracted. Solid phase and solvent extraction were ultrasonically analyzed and finally analyzed by gas chromatography-mass spectrometry.Results and discussion: Two pharmaceuticals, acetaminophen and sulfamethoxazole, and four steroid hormones, aquiline, estrone, estriol, and ethinyl estradiol, were selected as the target contaminants and the most important and continuous ones. All six analytes were identified in a raw wastewater sample and a treated wastewater sample. In another sample of treated wastewater, aquiline, estrone, and ethyl estradiol were not found. Contrary to our expectations, all analytes were found in soil samples, but only estrone was found in soil samples. In the plant sample (wheat), all analytes except ethynyl estradiol were observed.Conclusion: All contaminants were observed in raw and treated wastewater (treatment plant effluent) and a very positive role of the treatment plant in reducing the concentration was observed. On the other hand, changes in the concentration of pollutants along the channel path were observed. Also, it was concluded that soil particles do not adsorb the target contaminants despite their tendency to be absorbed by plants. Therefore, the entry of contaminated water into arable soil will lead to crop contamination and infiltration into groundwater. The presence and amounts of contaminants in the treated wastewater treatment canal are highly dependent on time and place. Mixing and diluting and entering new sources of contamination in the canal path causes significant changes in the concentration and type of contaminants observed in the samples.
Original Article
Farhad Misaghi; Zeinab Bigdeli; Mostafa Razzaghmanesh
Abstract
Introduction: Urbanization is increasing in the world and the world's urban population is becoming denser in cities. One of the effects of urbanization is the increase in the percentage of impervious surfaces in these areas. Today, many important cities in the world pay attention to the concept of sustainable ...
Read More
Introduction: Urbanization is increasing in the world and the world's urban population is becoming denser in cities. One of the effects of urbanization is the increase in the percentage of impervious surfaces in these areas. Today, many important cities in the world pay attention to the concept of sustainable development in order to reduce the effects of their city development on the quality and quantity of runoff and use modern green management technologies, including the best management methods and development methods with minimal side effects. A green roof is a multi-layered system that covers the roof and balcony of a building with vegetation and by absorbing and keeping part of the rain, and by influencing the processes of evaporation and transpiration, purification, the volume and intensity of the peak flow of runoff, the dimensions The drainage system reduces the downstream and improves the quality of air and water, preserves the beauty of the city and prevents the wastage of building energy.Material and methods: This research was conducted as a field experiment in the Faculty of Agriculture of Zanjan University. The test period was from April to August of 2017. In this research, the effect of the use of super absorbent (zeolite) on the amount of water absorption and retention, the maximum and minimum volume of runoff, the volume of runoff, sediment and the start time of the runoff resulting from rainfall in the rain intensity of 35, 45, 55, 65 and 75 mm/h has been investigated on a green roof with a slope of 5%, in a cold dry climate.Results and discussion: Based on this, with the increase in the intensity of rainfall, the volume of runoff also increases, and the volume of runoff in barren soil is more than the rest of the treatments, and its downward trend is soil containing 1% zeolite, soil containing 3% zeolite, and cultivated soil. Be Also, the volume of runoff increased with the increase in rainfall intensity and the highest value of runoff volume belongs to barren soil. The sediment measured in the runoff also increases with the increase in the intensity of precipitation in the treatments, except for the grass treatment.Conclusion: Barren soil has a very high volume of runoff due to the sealing of its surface layers and clogging of pores. Adding zeolite to the soil significantly reduced the volume of runoff and retained more water than barren soil. The rate of erosion in soil with 1% zeolite was high and the rate of erosion was the lowest in grass. In barren soil, because the penetration of water is low, after a short period of time after the rain, the water flows as runoff, but zeolite has the property and characteristic that when added to the soil, the time for the start of runoff is lengthened by 3%.
Original Article
Hadi Dordaneh; Kambiz Abrari Vajari; Zia-aldin Badehian
Abstract
Introduction: The Zagros forests, which are one of Iran's most important forest ecosystems, contain a diversified vegetation that includes trees, shrubs, and herb-layer species. Identification and precise knowledge of their ecological role in this ecosystem can help in natural resources protection and ...
Read More
Introduction: The Zagros forests, which are one of Iran's most important forest ecosystems, contain a diversified vegetation that includes trees, shrubs, and herb-layer species. Identification and precise knowledge of their ecological role in this ecosystem can help in natural resources protection and sustainable development. In order to study the effects of physiographic factors (aspect, slope, and elevation) on the woody plants species diversity and also soil carbon stock in the central Zagros, the maple tree (Acer monspessulanum Var. cinerscens) forest in Hashtadpahlu region which is located in Lorestan was selected. Material and methods: Within the forest, 37 circular plots, each measuring 1000 m2, were placed systematic-randomly for this purpose. Richness and diversity indices were calculated for woody species within plots. Soil samples were taken from a depth of 0-30 cm to measure the quantity of carbon stock in the soil and the value of soil organic carbon and bulk density for soil samples were measured.Results and discussion: In this forest, 11 different woody plant species (trees and shrubs) from seven different families were investigated. The results showed that the highest diversity of shrub species was observed in the northern aspect and the lower slopes (class of 5-20%), while the elevation has no significant effect on the shrub diversity. Also, the physiographic factors had no significant effect on shrub species richness and tree species diversity and richness. The most soil carbon stock was measured in the eastern aspect while the other physiographic factors had no significant effect on the carbon stock. The reduced carbon supply on the northern slopes relative to the rest of the slopes could be a result of heavy grazing, low density and poor vegetative quality of woody species, reduction of tree litter and other plant species and climatic conditions in this slope. As a result, the most important factors impacting the number of species diversity indices in the Acer forest are the aspect and slope.Conclusion: The richness and diversity of woody species in the Acer sp. forest are appropriate and physiographic factors have played an important role in the values of their indices. Physiographic parameters have an impact on the carbon stock of the soil. As a result, environmental variables should be considered in the management of Zagros forests due to its extensive distribution.
Original Article
Kimia Fotovvat; Leila Khazini; Yousefali Abedini; Mohammadreza Yousefi
Abstract
Introduction: Today, with the expansion of the activity of industrial units, the concentration of pollutants in the air has increased and humans are exposed to them through inhalation, ingestion, and dermal absorption. Among all pollutants, heavy metals have received a great deal of attention from environmentalists ...
Read More
Introduction: Today, with the expansion of the activity of industrial units, the concentration of pollutants in the air has increased and humans are exposed to them through inhalation, ingestion, and dermal absorption. Among all pollutants, heavy metals have received a great deal of attention from environmentalists due to their toxic nature. High concentrations of heavy metals in the environment can increase the risk of adverse effects on human health. Activity of copper casting units and its alloys made Naji Industrial Town of Zanjan as a main source of heavy metals in the atmosphere; therefore, evaluating the concentration and health effects of heavy metals emitted from the town is of particular importance.Material and methods: To evaluate the concentration and health effects of heavy metals emission from the industrial units of Naji Industrial Town, sampling of total suspended particles in the town and its adjacent areas (10 stations) was performed in January and May 2021. Inductively coupled plasma mass spectrometry (ICP-MS) was used to identify heavy metals. The risk of cancer and non-cancerous diseases due to respiration, ingestion and skin absorption of heavy metals in total suspended particles was also evaluated for both age groups of children and adults.Results and discussion: In this analysis heavy metals e.g. silver, arsenic, cadmium, chromium, copper, iron, lead, antimony, vanadium and zinc were identified. The concentrations of detected heavy metals were compared with national ambient air quality standards. The concentration of chromium and iron in all stations within Naji Industrial Town was higher than the standard level. Also, the concentrations of silver, cadmium, chromium, copper, iron, antimony, vanadium, and zinc in all stations adjacent to the Industrial Town was higher than the standard. The results of assessing the risk of non-cancerous diseases by exposure to heavy metals in total suspended particles, both in winter and spring, showed that exposure to heavy metals in all stations does not pose a risk to public health. The highest risk of cancer in winter and spring was due to exposure to the arsenic (at station 2, inside the industrial town) and cadmium (at station 4, inside the industrial town), respectively. In spring, the risk of cancer due to exposure to arsenic and cadmium was higher in all stations except station 2 than in winter. However, in the spring, the risk of cancer in all stations was lower than in the winter. The risk index values for the age group of children were higher than the age group of adults; therefore, children are more at risk for various types of cancer and non-cancerous diseases while exposing to heavy metals in the air.Conclusion: The results of the assessment of exposure to heavy metals released from Naji Industrial Town on human health show that the risk of non-cancerous diseases does not threaten the people of the study area; but the risk of cancer caused by the arsenic and cadmium is high at most of the surveyed stations.
Original Article
Mina Mohajer; Niloufar NezhadMoghaddam Zanjani
Abstract
Introduction: All people are responsible for environmental protection. This means that any person obliges to compensate for any damages which is called legal responsibility. In this paper, the relation between civil liability and social responsibility in the context of environmental responsibility is ...
Read More
Introduction: All people are responsible for environmental protection. This means that any person obliges to compensate for any damages which is called legal responsibility. In this paper, the relation between civil liability and social responsibility in the context of environmental responsibility is explored.Material and methods: This research is conducted qualitatively by context analysis approach. National as well as international documents related to civil liability, corporate social responsibility and environmental responsibility of people and their interconnections were defined and evaluated by library studies. To explore the relationship between environmental civil liability and social responsibility, their parameters were analyzed separately, and their districts, objectives and principals were analyzed comparatively. To understand the relationship between environmental civil liability and social responsibility, first they were analyzed separately; then, in terms of territory, goals, customary practice and pillars, an analytical comparison was made between these two responsibilities and in each section, it is stated which of the logical relations is established between them.Results and discussion: Results showed that there is a logical relation between civil liability and social responsibility in which there are some common features between them in term of considering social values. However, there are differences between these two responsibilities in which civil liability is merely considering present needs and values, while social responsibility considers present and future generations simultaneously.Conclusion: There is a structural difference between civil liability and social responsibility in the context of environmental protection in which civil liability as a branch of legal responsibility is going to improve social life, while social responsibility is seeking to upgrade human-environment relation to protect the environment. In civil liability, the main objective is to compensate damages to people and assets, while social responsibility emphasizes to prevent environmental damage.
Original Article
Mir Javad Gheybi; Sajjad Chehreghani; Mahdieh Azimi Youshanlouie; Zahra Darvishi Qulunji
Abstract
Introduction: With uncontrolled population growth, the safe disposal of waste is a major problem for metropolises. The issue of landfills and their location is at the end of the waste disposal life cycle. Waste burial is the most common method of disposal in urban communities of Iran and other countries ...
Read More
Introduction: With uncontrolled population growth, the safe disposal of waste is a major problem for metropolises. The issue of landfills and their location is at the end of the waste disposal life cycle. Waste burial is the most common method of disposal in urban communities of Iran and other countries of the world. Consequently, its environmental impact assessment is very important to reduce the negative environmental impact. Therefore, in this study, the environmental effects of the Urmia landfill utilizing the RIAM method were evaluated.Material and methods: In this study, to assess the environmental impact, field information was collected from the landfill of Urmia city. Then, the effect of different activities in the project was evaluated by the RIAM method. Also, important and influential factors have been classified by a group of environmental experts into four sections: physico-chemical, biological-ecological, cultural-social, and economic-operational. Each factor is scored based on the importance of the situation and the time value. The scoring method is such that by multiplying the criteria related to the importance of the situation, the total value of these criteria is determined. Also, for the provisional value criteria, its sub-criteria are summed. After obtaining these criteria, by multiplying these two criteria, the environmental score (ES) of the project is calculated.Results and discussion: Based on the study, it was observed that the highest negative score for biological-ecological components was -402 if the disposal continued in this way. Also, the lowest negative score amongst other available components for economic-operational components was equal to -109. The only positive point was related to the socio-cultural components which are part of subsistence. Also, the score for physico-chemical components and socio-cultural components were -351 and -114, respectively. The reasons for these negative scores are the lack of proper attention to the volume of waste produced by the people, the lack of a leachate treatment system, the lack of vegetation in the municipal waste landfill, unprincipled, and unsanitary waste burial, transportation distance, etc. Disposal operations with the current method, in addition to creating environmental pollution, are also very costly. Most of the cost of this method is spent on transportation, manpower and excavation, and earthmoving operations. In addition to these financial costs, unfortunately, in recent years, with the disappearance of agricultural lands around the municipal landfill, people have migrated from the surrounding villages. This causes a lot of pollution and prevents the conversion and recycling of waste.Conclusion: The results of this study showed that if waste disposal operations continue in the same trend, irreparable environmental damage will be inflicted on the region's ecosystem. To prevent these damages, it is necessary to provide practical solutions and in the management, the department should review the continuation of this method. Also, due to the landfill and waste disposal operations reaching their limit, it is suggested that if a new place for waste disposal is selected, it should be based on studies in the fields of geology, botany, geotechnics, etc. It also seems that the establishment of a waste recycling plant can be a great help in reducing the volume of waste.
Original Article
Amin Fathi Taperasht; Hossein Shafizadeh-Moghadam; Mahdi Kouchakzadeh
Abstract
Introduction: Climate identification and classification have long been of interest to meteorologists. Researchers have classified the earth into homogeneous climatic zones using different methods and climatic variables such as rainfall and temperature. They have used the results of climate zoning to ...
Read More
Introduction: Climate identification and classification have long been of interest to meteorologists. Researchers have classified the earth into homogeneous climatic zones using different methods and climatic variables such as rainfall and temperature. They have used the results of climate zoning to assess water scarcity and water resources on a small and large scale to anticipate practical measures to control drought in vulnerable areas. The purpose of this study is to update and analyze the Spatio-temporal analysis of Iran's climatic classification based on the Domarten index and the Mann-Kendall test. Because in studies based on climate classification maps, up-to-date maps can better help understand the study area.Material and methods: For this study, data related to temperature and precipitation variables were extracted monthly from 153 synoptic stations from 1995-2019 from the Meteorological Organization of Iran. First, the data of average annual temperature and total annual precipitation were obtained from monthly data and then, using isothermal maps, they were obtained using the kriging model. The final climate zoning map was prepared using the De-Martonne index based on rainfall and temperature. The non-parametric Mann-Kendall test was also used to evaluate the significance or non-significance of the De-Martonne climate index and determine the trend.Results and discussion: The results showed that based on the Kriging model, R2 and RMSE for precipitation data were 0.58 and 167.51 mm, respectively, and for the temperature data were 0.83 and 2.23 °C, respectively. This indicates better performance of the model for temperature data. This is related to the high variance of precipitation data in the country. Iran's climatic zoning based on the De-Martonne index showed six main climatic types in Iran. Most of Iran's area has an arid climate and then a semi-arid climate. The study results showed that arid climate is 76.40%, the semi-arid climate is 19.65%, and other climates make up less than 4% of the area of Iran. Also, the area of arid and semi-arid climates with an area of 96.05% of the area of Iran has increased compared to previous research, which may be due to reduced rainfall and increased temperature. Also, the results of the Mann-Kendall test showed that Khorramdareh, Miyaneh, Ramsar, Boroujerd, Piranshahr, Tabriz, and Bijar stations have a significant upward trend (wetting trend), and Dezful, Malayer, Sabzevar, Bandar Anzali, Tehran (Mehrabad), Tehran (Shemiran), Qazvin and Dushan Tappeh stations have a significant downward trend (drying trend) at the significance level of 5%.Conclusion: This study showed that Iran has six climatic regions, including arid, semi-arid, Mediterranean, semi-humid, humid, and very humid. Also, comparing the results with the results of research done by other researchers in the past showed that the area of arid and semi-arid climates in the study period has increased compared to previous periods. Also, 14% of stations with a downtrend (8 stations) have a significant downtrend, and 7% of stations with an uptrend (7 stations) have a significant uptrend at the significance level of 5%.
Original Article
Fatemeh Sepahvand; Karim Naderi Mahdei; Saeed Gholamrezai; Masoud Bijani
Abstract
Introduction: In Iran, out of 88.5 billion water resources, about 83 billion cubic meters or 93.5% is allocated to the agricultural sector and therefore agriculture is the largest consumer of water. Increasing population, increasing cultivation areas, and agricultural productions have increased the consumption ...
Read More
Introduction: In Iran, out of 88.5 billion water resources, about 83 billion cubic meters or 93.5% is allocated to the agricultural sector and therefore agriculture is the largest consumer of water. Increasing population, increasing cultivation areas, and agricultural productions have increased the consumption of these resources. Eventually, increased consumption leads to a decrease in the water table and drainage of aquifers. Statistics show that many of the plains are currently in crisis. Romeshkan plain is one of the plains which has faced a significant reduction of resources in the recent decades. The purpose of this study was to develop the strategies for the sustainable management of water resources in this plain. Romeshkan plain is a forbidden plain, but there are still many exploitations in it. Crops are planted in this plain that need a lot of water. This research hasinvestigated the strategies of sustainable management of groundwater resources in Romeshkan plain using theFuzzy Delphi technique.Material and methods: The present study is an applied and descriptive research (non-experimental). The statistical population included 28 faculty members, experts, and farmers in Khorramabad and Romeshkan. The sample size was estimated using the purposeful snowball sampling method. Secondary data were also obtained from government departments to identify and describe the Romeshkan plain. Data on water resources of Romeshkan plain were required. These data show how much water resources have dwindled over the last three decades.Results and discussion: The results showed that despite the criticality of the Romeshkan plain, the livelihood of rural communities is mainly dependent on the agricultural sector. Also, hydrophilic crops are widely cultivated. In this plain, the structure of supply and exploitation of water resources is traditional. The agricultural lands of this plain do not have a new irrigation system. The results of this research show five types of strategies (economic, technological, environmental, policy-oriented, and social). The priority of the strategies was "develop sustainable rural employment". This will certainly require "human development of water-related actors and empowerment of rural communities". "Developing the right technologies", which was another strategy, could also help reform the traditional structure of supply and consumption of these resources.Conclusion: Now the conditions of Romeshkan plain are critical. The results of this study showed that sustainable management of groundwater resources in this plain will not be achieved solely based on technological strategies. Also, economic, social, policy-oriented and environmental strategies must also be considered. Reform of the water consumption structure should be considered in parallel with the development of non-agricultural employment. Because the development of employment reduces the pressure on these resources.
Original Article
Akhtar Veisi; Hadi Veisi; Korous Khoshbakht; Reza Mirzaei Talarposhti; Reza Haghparast
Abstract
Introduction: Soil health as one of the main components to achieve sustainable agricultural systems is being adversely affected by agricultural operations such as tillage. Soil health can be quantified using the specific physical, chemical, and biological parameters of the soil via specific quantitative ...
Read More
Introduction: Soil health as one of the main components to achieve sustainable agricultural systems is being adversely affected by agricultural operations such as tillage. Soil health can be quantified using the specific physical, chemical, and biological parameters of the soil via specific quantitative soil quality methods. As a result, studying soil quality and fertility in different land management systems is essential to establish appropriate crop operations to achieve optimal production and sustainable cropping systems. Soil Management Assessment Framework (SMAF) is used as a powerful and reliable tool to assess the effect of different crop management on soil quality and health. This study aims to evaluate and quantify the effect of different tillage methods on soil quality using the SMAF algorithm.Material and methods: The present study was conducted as a field experiment based on a randomized complete block design during two cropping years in 2016-2017 and 2017-2018, in four replications. Experimental treatments included tillage methods (no-tillage, reduced tillage, and no-tillage), and the areas were considered replication. Winter wheat (Triticum aestivum L.) was planted in the first year, followed by winter chickpea (Cicer arietinum L.) in the second year of crop rotation in farmers' fields. Soil sampling from a soil depth of 0-30 cm was taken in two stages, before planting wheat at the beginning and after harvesting chickpeas in the second year. Important soil parameters were measured, including bulk density, phosphorus, potassium, acidity, electrical conductivity, soil organic carbon, carbon, microbial biomass, and microbial biomass nitrogen.Results and discussion: The results showed that implementing the conservation tillage methods improved some of the important soil parameters and soil quality index, indicating the positive effect of minimum soil disturbance and crop residue maintenance on soil quality. Although the physical and chemical properties of soil at the end of the second year did not change significantly compared to pre-treatment conditions, soil biological properties such as microbial biomass carbon and soil organic matter were positively affected by tillage systems. The laboratory-measured data of soil properties were well reflected in the SMAF algorithm. The results showed that at the end of the experiment, the soil quality index in the conventional plowing system was lower compared to conservation tillage methods. No-tillage had the highest value of soil quality index (0.65) at the end of the experiment. As stated in the quantitative description of soil properties, the higher quality index in the no-tillage method is mainly due to the improvement of soil biological conditions. Soil degradation due to excessive plowing, lack of residue preservation, and improper use of chemical fertilizers not only reduces soil organic matter but also degrades the physical properties of soil.Conclusion: In general, the results showed that conservation tillage methods could improve soil quality and efficiency in dryland areas, and the SMAF algorithm can be a useful tool to assess and monitor the soil quality of various cropping systems in dryland areas. However, citing the data of this study requires long-term results, and in order to evaluate the efficiency of the soil ecosystem to provide ecosystem services, it is necessary to compare crop systems with more sustainable systems such as forests and pastures
Original Article
Sahebeh Hajipour; Morteza Mohammadi Deylamani; Mohadeseh Momen Zadeh; Mansour Afshar Mohammadian
Abstract
Introduction: plant remediation is cost-effective and environmentally friendly, in which the plant uses its natural abilities to restore the environment. Plants used for phytoremediation must have the ability to accumulate large amounts of metal pollutants without causing toxicity in them. Today, with ...
Read More
Introduction: plant remediation is cost-effective and environmentally friendly, in which the plant uses its natural abilities to restore the environment. Plants used for phytoremediation must have the ability to accumulate large amounts of metal pollutants without causing toxicity in them. Today, with the increase in the world's population and the development of industries and factories, the amount of wastewater entering the environment, which often contains heavy metals and various pollutants, increases. Heavy metals have destructive effects on the health of plants and animals in different ecosystems. Considering the ability of heavy metals to accumulate and cause toxicity in living organisms, this type of pollution is considered a serious and fundamental problem. The use of plants as an effective and cost-effective technology to remove metal pollutants from contaminated soils and waters has been recommended as a new method instead of other costly measures. Therefore, the removal of pollutants from soil and polluted waters with the help of plants through absorption and accumulation in roots, stems and leaves is considered as one of the purification methods to remove metal pollutants. In this process, choosing the right plant with high absorption capacity and compatible with the environment, without negative environmental effects, plays a very effective role in the amount of pollutant purification.Material and methods: In this regard, in order to investigate the uptake and accumulation of heavy metals by plants, an experiment was conducted in a completely randomized design with three replications using vetiver plant. Plants treated with industrial effluent and control plants were irrigated with municipal water. Also, pots containing soil without plants were considered to measure the amount of elements in the soil during the six-month experiment period, they were regularly irrigated with other pots with industrial effluent. In order to investigate the effect of irrigation with effluent on the yield of vetiver plant, after a six-month period of experiment, heavy element analysis and anatomical and physiological studies were performed on plants treated with industrial effluent and control plants. Transfer and accumulation factors, which are two important factors in measuring plant ability for phytoremediation, were also examined.Results and discussion: The results of this study showed that among the most heavy metals in industrial effluents, which included zinc and chromium, most of the mentioned elements were stored in the roots of vetiver and less were collected in the aerial parts. Also, the results of physiological traits experiments showed that the factors of soluble sugars and proline in the treated plants increased compared to the control and the concentration of malondialdehyde in the treated plants decreased compared to the control. The results of root studies in control and treated plants showed that root diameter, central cylinder diameter and number of vascular clusters in treated plants increased compared to control.Conclusion: Overall, the results of this study showed that in the process of absorption of heavy metals, changes were made in some anatomical and physiological traits of treated plants. Examination of transfer and bioaccumulation factors also showed that vetiver has the ability to absorb zinc and chromium through plant stabilization.
Original Article
Maryam Peymani; Asghar Abdoli; Seyed Daryoush Moghaddas
Abstract
Introduction: The introduction of invasive fish species into aquatic ecosystems causes various adverse ecological and socio-economic impacts. The first step in analyzing the effects of these species is to identify the risk. Then, different tools have been developed to identify potential invasive ...
Read More
Introduction: The introduction of invasive fish species into aquatic ecosystems causes various adverse ecological and socio-economic impacts. The first step in analyzing the effects of these species is to identify the risk. Then, different tools have been developed to identify potential invasive species and evaluate the potential degree of their invasiveness to support decision-makers in analyzing the invasive risk of these species. This study aimed to assess the invasive potential of the non-native species redbelly tilapia (Coptodon zillii, Gervais 1848) in the Shadegan Wetland basin (the Karun and Jarahi catchments) using some of these tools.Material and methods: The level of risk for C. zillii in the trinational risk assessment protocol was determined based on the results of the two components "Probability of Establishment" and "Consequences of Establishment". In the German-Austrian Blacklist Information System (GABLIS), the invasive potential of the species was evaluated according to the distribution in the study area. The non-native species were screened by the Aquatic Species Invasiveness Screening Kit (AS-ISK) model according to the threshold of the assessment area; and the rank of species invasion was calculated based on the probability of species establishment, expansion, and environmental effects, using the Harmonia+ method. Also, the climate matching between the introduced and native range of the species was carried out with the Köppen-Geiger climate classification system.Results and discussion: The results of trinational risk assessment indicated that the species posed a high potential rank of placing at each step of introduction, establishment, and expansion potential and the possibility of economic and environmental impacts in the study area. The results of the GABLIS protocol showed that the non-native species C. zillii has been widely distributed in the risk assessment area and was placed on the blacklist and the subset management list (b3). In the AS-ISK risk assessment, the risk score of the species was 44, which was higher than the tool threshold (22.5) for the study area. This score indicates that this species has a high invasive risk in the wetland. The overall risk score in the Harmonia+ method, which is a function of invasiveness and species impacts, was assessed as high for the redbelly tilapia. Based on the results, the risk of establishment and dispersal of this species in the study area is high, and its environmental impacts are significant. Also, there was a high climate match between the risk assessment area and the native range of the species in the Köppen-Geiger climate classification system. Conclusions: The trinational risk assessment methods, GABLIS, AS-ISK, and Harmonia+ models were able to show the invasiveness of the non-native C. zillii in Shadegan Wetland basin as literature and field evidence demonstrate that the species has exerted strong and adverse impacts on native fishes and local people livelihood in the risk assessment area. Given the results of risk assessment methods and the risks posed by this species, it is highly recommended that large-scale control and management measures should be seriously implemented.
Original Article
Ehsan Malekipour; MohammadHossein Sharifzadegan
Abstract
Introduction: The transaction cost (TC) is rooted in institutional economics, and is related to the concept of efficiency. One of the tasks of planners is to promote the efficiency of the planning process. Thus, identification of effective factors for producing TC including searching for information, ...
Read More
Introduction: The transaction cost (TC) is rooted in institutional economics, and is related to the concept of efficiency. One of the tasks of planners is to promote the efficiency of the planning process. Thus, identification of effective factors for producing TC including searching for information, negotiation, creating and application of monitoring mechanisms is important. Because through this, planners can rely on the institutional design of governance structures to reduce TC. In this regard, since 1990, efforts have begun in urban planning in the world. Many key actors including citizens are engaged with detailed plans in Iran’s planning system. The aim of the present paper is to reduce the TC of Isfahan’s detailed plan for different actors by introducing the effective factors for creating TC in the plan, determining the key factors among them, and developing possible scenarios with high consistency for the governance structure of the plan in order to pave the way for redesigning this process.Material and methods: In this study, data collection and data analysis methods were qualitative and quantitative, thus it is a mixed-method research. Effective factors on TC were determined through thematic analysis of interviews conducted with key actors of detailed plan by using Atlas ti. The questionnaire of cross-impact matrix was filled by experts and their data were analyzed using structural analysis and the MicMac method in order to determine five key factors/descriptors among all. For each key factor, various variants were considered. Based on the experts’ opinions about the impact of these variants on each other as the input of ScenarioWizard, possible scenarios with high consistency were developed for the governance structure of the detailed plan.Results and discussion: As preparing detailed plan encompasses both searching and information costs and also bargaining and decision costs to reach an acceptable agreement with other parties about land development rights, the whole costs of preparing a detailed plan are TC. The costs of monitoring the plan such as costs related to article 100 of municipality law, are also TC. Affecting factors in creating TC in the process of Isfahan detailed plan is categorized into three broad themes of the institutional environment, quality of governance, and capital. These three categories include 23 effective factors among which five factors of rules and regulations, bureaucracy, trust between actors, level of participation and access to information are recognized as key factors/descriptors. Considering different variants devoted to these factors, three scenarios with high consistency were developed for governance structure of detailed plan. One of these scenarios is toward less concentration and the others is seeking more concentration in planning system.Conclusion: Comparing the effective factors of TC resulted from this research with that of theoretical background showed that although there are differences in categorizing and naming the factors, their nature is the same. The key effective factors were identified through the expert panel. The total effective factors are mostly related to the implementation, monitoring, and revision phases of the detailed plan, in contrary to producing phase. The scenario writing process for the governance structure of the detailed plan to reduce its TC and conducting institutional design systematically and understandably in this research, fill the present gap in the body of knowledge. In three developed scenarios the variants of each five variables/descriptors are in one direction, forming a completely concentrated or deconcentrated scenario. Such a situation emphasizes the fact that the governance of urban land use is possible through patterns or systems formed of consistent elements and follows a unified logic. These patterns are either toward more concentration or deconcentration in the planning system which has a historic background in the present era in different cities.
Original Article
Maliheh Jamali; Javad Bayat; Seyed Mohammad Reza Talakesh; Seyed Hossein Hashemi
Abstract
Introduction: As a result of human development and population growth, there is a corresponding need for essential resources for humans. Industrial and agricultural activities have greatly polluted most agricultural lands. Petroleum compounds and heavy metals, both are common pollutants of soils that ...
Read More
Introduction: As a result of human development and population growth, there is a corresponding need for essential resources for humans. Industrial and agricultural activities have greatly polluted most agricultural lands. Petroleum compounds and heavy metals, both are common pollutants of soils that have been irrigated by untreated wastewater, which pose a potential threat to the environment. Soil pollution of the agricultural lands will lead to a decline in cultivation and finally decrease food production. Agricultural lands in the southern part of Tehran are being irrigated with untreated wastewater for more than 30 years to produce a variety of vegetables, legumes, and cereals.Material and methods: In this study, the concentration of heavy metals and petroleum compounds were determined in 83 sampling points at two depths (0 to 30 and 30 to 60 cm). The study area was divided into two separate zones, in which 44 points were located in zone 2 and 39 points were located in zone 1. Petroleum hydrocarbons and heavy metals, As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn, were measured at the top and subsoil by MOOPAM and ICP-AES methods, respectively. ArcGIS and R software were applied to create distribution maps of the pollutants and some statistical analyses.Results and discussion: The results showed that the soil of agricultural land in the area is highly polluted, as the concentration of Cr, Pb, Co, and Ni has exceeded the standard level e.g. 0.22 mg/kg for Cd and 620 mg/kg for Pb. The concentration of petroleum compounds in wastewater irrigated lands in both top and subsoil was higher than that of groundwater irrigated lands. High levels of As, Cr, Cu, Pb, and Zn were observed in groundwater irrigated lands compared with wastewater irrigated lands. Cr and Pb were almost 89 and 8 times higher than the standard limit of agricultural lands in Iran, respectively. The spatial distribution map of petroleum compounds showed that only the southeast of the area falls into the heavily contaminated class. The distribution map of heavy metals also revealed that most parts of the studied area fall into the heavily contaminated class. Soil organic matter has more concentration in the topsoil.Conclusion: Overall, the south of the studied area has been more affected by wastewater irrigation, agrochemicals and groundwater pollution in terms of heavy metals and petroleum compounds. Our study revealed various anthropogenic pollution sources, which are mostly from wastewater irrigation and the application of agrochemicals. Therefore, a management plan should be applied to the agricultural lands of this region to control and reduce the level of contamination.