Heavy Metals Contents of PM10in Ambient Air of Ahvaz City, Iran

Document Type : Original Articles


1 Assistant Professor, Department of Environmental Health Engineering, Faculty of Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Associate Professor, Department of Environmental Health Engineering, Faculty of Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Ph.D Student of Environmental Health Engineering, Faculty of Health, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 MSc. in Environmental Health Engineering, Faculty of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran and Expert in Waste Management at Imam Khomeini Hospital, Abadan, Iran

5 Assistant Professor,Department of Biostatistics, Faculty of Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

6 Islamic Azad University of Science and Research, Young Researchers Club, Ahvaz, Iran


Ahvaz as the focal point of south western of Iran has impressed by Middle East Dust (MED) storms which has originated from Iraq, Saudi Arabia, Jordan, Syria and also Africa. The main objective of this study was to evaluate heavy metals contents of PM10during normal and dust event days in Ahvaz. High volume sampler device was selected to take sample at a high traffic area of the city. Result showed that during dust event days, the average concentrations of PM10were 300 and 278 μgm-3in the spring and summer, while during normal days, the corresponding values were 145 and 126, respectively. Findings of enrichment factors indicated that Al with low enrichment factor had crustal origin, whereas Pb and Zn with high EF had anthropogenic sources such as transportation as well as industrial emissions. In present study, the concentrations of PM10were higher than the standard values.


  1. Haritash A, Kaushik C. Assessment of seasonal enrichment of heavy metals in respirable suspended particulate matter of a sub-urban Indian city. Environmental monitoring and assessment; 2007;128(1-3):411-420.
  2. Lopez J, Callen M, Murillo R, Garcia T, Navarro M, De la Cruz M, Mastral A. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental research; 2005;99(1):58-67.
  3. Tahir N M, Poh S, Suratman S, Ariffin M, Shazali N, Yunus K. Determination of trace metals in airborne particulate matter of Kuala Terengganu, Malaysia. Bulletin of environmental contamination and toxicology; 2009;83(2):199-203.
  4. Amodio M, Andriani E, Caselli M, Dambruoso P R, Daresta B E, de Gennaro G, Ielpo P, Placentino C M, Tutino M. Characterization of particulate matter in the Apulia Region (South of Italy): features and critical episodes. Journal of atmospheric chemistry; 2010;63(3):203-220.
  5. Pastuszka J S, Rogula-Kozłowska W, Zajusz-Zubek E. Characterization of PM10 and PM2. 5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environmental monitoring and assessment; 2010;168(1-4):613-627.
  6. Kampa M, Castanas E. Human health effects of air pollution. Environmental pollution; 2008;151(2):362-367.
  7. Lazor P, Tomaš J, Toth T, Toth J, Čeryova S. Monitoring of air pollution and atmospheric deposition of heavy metals by analysis of honey. Journal of Microbiology, Biotechnology and Food Sciences; 2012;1(4):522-533.
  8. Goudarzi G, Mohammadi M J, Angali K A, Neisi A K, Babaei A A, Mohammadi B, Soleimani Z, Geravandi S. Estimation of Health Effects Attributed to NO2 Exposure Using AirQ Model. Archives of Hygiene Sciences; 2011;1(2).
  9. Goudarzi G, Zallaghi E, Neissi A, Ankali K A, Saki A, Babaei A A, Alavi N, Mohammadi M J. Cardiopulmonary mortalities and chronic obstructive pulmonary disease attributed to ozone air pollution. Archives of Hygiene Sciences; 2013;2(2).
  10. Chelani A, Gajghate D, Hasan M. Airborne toxic metals in air of Mumbai city, India. Bulletin of environmental contamination and toxicology; 2001;66(2):196-205.
  11. Pike S, Moran S. Trace elements in aerosol and precipitation at New Castle, NH, USA. Atmospheric Environment; 2001;35(19):3361-3366.
  12. Thakur M, Deb M K, Imai S, Suzuki Y, Ueki K, Hasegawa A. Load of heavy metals in the airborne dust particulates of an urban city of central India. Environmental monitoring and assessment; 2004;95(1-3):257-268.
  13. Lee B-K, Park G-H. Characteristics of heavy metals in airborne particulate matter on misty and clear days. Journal of hazardous materials; 2010;184(1):406-416.
  14. Perry R, Young R J. Handbook of air pollution analysis. Chapman and Hall Ltd., 11 New Fetter Lane, London EC4P 4EE; 1977. p.
  15. Rad H D, Babaei A A, Goudarzi G, Angali K A, Ramezani Z, Mohammadi M M. Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Quality, Atmosphere & Health:1-10.
  16. Derakhshandeh M, Rostami M H, Goudarzi G, Rostami M Z. Advances in Civil and Environmental Engineering.
  17. Goudarzi G, Shirmardi M, Khodarahmi F, Hashemi-Shahraki A, Alavi N, Ankali K, Babaei A, Soleimani Z, Marzouni M. Particulate matter and bacteria characteristics of the Middle East Dust (MED) storms over Ahvaz, Iran. Aerobiologia; 2014;30(4):345-356.
  18. Shahsavani A, Naddafi K, Jafarzade Haghighifard N, Mesdaghinia A, Yunesian M, Nabizadeh R, Arahami M, Sowlat M, Yarahmadi M, Saki H. The evaluation of PM< sub> 10, PM< sub> 2.5, and PM< sub> 1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from april through september 2010. Journal of Arid Environments; 2012;77:72-83.
  19. Lee B-K, Hieu N T. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol and Air Quality Resarch; 2011;11(6):679-688.
  20. Draxler R R, Gillette D A, Kirkpatrick J S, Heller J. Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment; 2001;35:4315-4330.
  21. Thakur M, Kanti Deb M, Imai S, Suzuki Y, Ueki K, Hasegawa A. Load of Heavy Metals in the Airborne Dust Particulates of an Urban City of Central India. Environmental Monitoring and Assessment; 2004;95(1-3):257-268.
  22. Arimoto R, Kim Y, Kim Y, Quinn P, Bates T, Anderson T, Gong S, Uno I, Chin M, Huebert B. Characterization of Asian dust during ACE-Asia. Global and Planetary change; 2006;52(1):23-56.
  23. Herut B, Nimmo M, Medway A, Chester R, Krom M D. Dry atmospheric inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean): sources and fluxes. Atmospheric Environment; 2001;35(4):803-813.
  24. Al-Momani I. Trace elements in atmospheric precipitation at Northern Jordan measured by ICP-MS: acidity and possible sources. Atmospheric Environment; 2003;37(32):4507-4515.
  25. Pandey P, Patel K, Å ubrt P. Trace elemental composition of atmospheric particulate at Bhilai in central-east India. Science of the Total Environment; 1998;215(1):123-134.
  26. M. Rashid, Rahmalan A, Khalik A. Characterization of Fine and Coarse Atmospheric Aerosols in Kuala Lumpur. Pertanika J. Sci. & Technol; 1997;5(1):25-42.
  27. Okuda T, Kato J, Mori J, Tenmoku M, Suda Y, Tanaka S, He K, Ma Y, Yang F, Yu X, Duan F, Lei Y. Daily concentrations of trace metals in aerosols in Beijing, China, determined by using inductively coupled plasma mass spectrometry equipped with laser ablation analysis, and source identification of aerosols. Science of the Total Environment; 2004;330(1–3):145-158.
  28. Hien P D, Binh N T, Truong Y, Ngo N T, Sieu L N. Comparative receptor modelling study of TSP, PM2 and PM2−10 in Ho Chi Minh City. Atmospheric Environment; 2001;35(15):2669-2678.
  29. Fang G-C, Chang C-N, Chu C-C, Wu Y-S, Fu P P-C, Yang I L, Chen M-H. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Science of the Total Environment; 2003;308(1–3):157-166.
  30. Shah M H, Shaheen N, Jaffar M, Khalique A, Tariq S R, Manzoor S. Spatial variations in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad, Pakistan. Journal of Environmental Management; 2006;78(2):128-137.
  31. Shahsavani A, Naddafi K, Jaafarzadeh Haghighifard N, Mesdaghinia A, Yunesian M, Nabizadeh R, Arhami M, Yarahmadi M, Sowlat M, Ghani M, Jonidi Jafari A, Alimohamadi M, Motevalian S, Soleimani Z. Characterization of ionic composition of TSP and PM10 during the Middle Eastern Dust (MED) storms in Ahvaz, Iran. Environmental Monitoring and Assessment; 2012;184(11):6683-6692.
  32. Talebi SM, Tavakoli Ghanani T. Level of PM10 and its chemical composition in the Atmosphere of the city of Isfahan. Iran J Chem Eng; 2008;5(3):62-67.