Integration Sentinel 1 and 2 satellite data with spectral indices to improve classification methods (Anzali wetland)

Document Type : علمی - پژوهشی

Authors

1 Department of Natural Environment, Environmental Research Institute, University Jihad of Gilan Province, Rasht, Iran.

2 Department of Water Resources Monitoring, Environmental Research Institute, University Jihad of Gilan Province, Rasht, Iran.

3 Department of Waste Process, Environmental Research Institute, University Jihad of Gilan Province, Rasht, Iran.

10.48308/envs.2024.1353

Abstract

Background and Objective: Technical limitations in classifying heterogeneous wetland environments, characterized by diverse vegetation cover, land use, and species diversity, often lead to interference in classification results and reduced accuracy in differentiating vegetation classes within wetland ecosystems. There is limited research available to improve classification methods in wetland environments. The main objective of this study is to investigate the combination of multispectral and radar data to enhance wetland classification methods and propose an approach for better differentiation of various vegetation covers in highly biodiverse wetland environments, specifically in the Anzali International Wetland.

Materials and Methods: In this study, a combination of Sentinel-1 and Sentinel-2 data was used as the first data series, and a combination of Sentinel-2 data with spectral indices such as NDVI, SAVI, and mNDWI was used as the second data series. The best image for each season (summer, autumn, winter, and spring) from 2016 to 2022 was selected to create classification maps and examine detailed changes in the wetland. For image classification, training areas were selected based on field sampling, combining satellite imagery and Google Earth images. Classification was performed using three supervised algorithms: Support Vector Machine, Artificial Neural Network, and Maximum Likelihood.

Results and Discussion: The results indicated that the combination of Sentinel-1 and Sentinel-2 data yielded better results compared to the combination of Sentinel-2 data with spectral indices. The overall accuracy and Kappa coefficient for the four periods were 92.99%, 87.43%, 83.80%, and 97.90% (in 2016, 2017, January 2022, and July 2022, respectively) when using the combination of Sentinel-1 and Sentinel-2 data, which were significantly higher than the results obtained with the combination of Sentinel-2 data and spectral indices. Furthermore, the combination of Sentinel-1 and Sentinel-2 data resulted in better detection of water bodies and lotus habitats within the wetland.

Conclusion: Due to the complexity of wetland spatial structures and existing threats, identifying land cover types is challenging. This study demonstrates the use of multi-temporal Sentinel-1 and Sentinel-2 data to comprehensively assess wetland characteristics. The accuracy assessment for the four study periods from 2016 to 2022 using three classification algorithms, Support Vector Machine, Maximum Likelihood, and Artificial Neural Network, showed that the combination of Sentinel-2 and Sentinel-1 data outperformed the combination of Sentinel-2 data with spectral indices in terms of overall accuracy and Kappa coefficient. Among the three algorithms used, the Maximum Likelihood algorithm consistently achieved the highest overall accuracy and Kappa coefficient compared to the other two algorithms.

Keywords