Monitoring Temporal Changes of Land Use in Khoda Afarin and Kalibar Cities Using Remote Sensing Technology

Document Type : Original Article


1 Department of Environmental Sciences and Engineering, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran

2 Department of Natural Geography, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran


Introduction: Investigating changes in land cover is one of the most important aspects of natural resource management and environmental changes. With the increase of urban and rural areas and the necessities of human life, changes are made on the surface of the earth. These changes are caused by the conflict between the needs of human societies and environmental constraints on Earth. In this research, using remote sensing techniques, the monitoring of land surface changes in Khoda Afarin and Kalibar cities was investigated using remote sensing technology during a period of 20 years (2000-2020).
Material and Methods: In order to perform statistical and visual analysis of MODIS sensor images installed on Terra and Aqua satellites, for the period of 2000 to 2020, the method of classification and extraction of the earth's surface cover was studied. The IGBP classification method was used in 17 classes to classify land use. Then, based on the model and classification method, they were processed in the Arc GIS software environment. The area of each land use was calculated in each year. Natural factors affecting land use changes were used from the daily rainfall data for the studied period. Based on these values, the trend of changes in precipitation and drought was drawn according to the SPI standard precipitation index in the software environment.
Results and Discussion: Twenty MODIS sensor images were analyzed for the period under study and annual maps and change trend charts of each land use were drawn. The land use coverage in the years 2001, 2002 and 2003 showed that the largest area was related to agriculture in 2001, followed by pasture. This trend continued from 2002 to 2003.. In these years, the process of forest destruction and change of use from forest to pasture and then agriculture has started. From 2004 to 2006, Bayer's unfavorable coverage is visible. In the years 2007 to 2009, regarding dam construction the water coverage and the area under cultivation increased and in the years 2010 to 2012, the city and man-made buildings increased significantly, and from 2012 to 2020, the process of destroying forests and turning them into pastures and then agricultural lands in the year. The end of the investigated period is also quite evident, and also by examining the natural factors, the amount of rainfall and drought during the 20-year period has had a downward trend.
Conclusion: The results show that the area of forest and shrub cover has decreased, and instead, there has been a significant increase in barren, water, pasture and agricultural cover, although the increase in water cover is due to the construction of dams in the study area. Also, the results of examining the amount of precipitation and drought show that the trend of precipitation is decreasing and relatively severe droughts have occurred in the region.


Azmudeh, A., Kavian, A., Soleimani, K. and Vahabzadeh, Q., 1994. Comparison of runoff and erosion rates in soils covered by forest, agricultural and garden uses using a rain simulator. Ab and Khak Journal. 24(3). (In Persian).
Barati, B., Jahani, A., Zebardast, L. and Rayegani, B., 2017. "Integration assessment of the protected areas using landscape ecological approach (Case study: Kolah Ghazy national park and Wildlife Refuge). Journal of Town and Country Planning. 9 (1), 153-168. (In Persian).
Dadhich, P.N. and Hanaoka, S., 2011. Spatio-temporal urban growth modeling of Jaipur, India. Journal of Urban Technology. 18 (3), 45-65.
Fatemi Talab, S.R., Maadani Pour, M. and Hashemi, S.A., 2014. Estimation of changes in the cover plant of Rudsar forests using classification of artificial neural network and maximum probability. Journal of Rs and GIS in Natural Resources. 6(2). (In Persian).
Forman, R. T.T and  Godron, M., 1986. Landscape ecology, New York: Wiley.
Ghasemzadeh, B., Pazhuhan, M., Hataminejad, H. and Sajjadzadeh, H., 2014. Impact of Zayandeh Rud drought on social interactions and populated spaces in Isfahan city, Journal of Environmental Studies. 40 (2), 481-498. (In Persian).
Gopal, S. and Woodcock, C., 1996. Remote sensing of forest change using artificial neural network, IEEE Transactions of Geosciences and Remote Sensing. 34 (2), 398-404.
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling. 222 (20-22), 3761-3772.
Hamad, R., Balzter, H. and Kolo, K., 2017. Multi-criteria assessment of land cover dynamic changes in halgurd sakran national park (HSNP), kurdistan region of Iraq, using remote sensing and GIS, Land. 6 (1), 18-32.
Huang, Y., Yang, B., Wang, M., Liu, B. and Yang, X., 2020.  Analysis of the future land cover change in Beijing using CA–Markov chain model. Environmental Earth Sciences. 79 (2), 60.
Jafarnia, Sh., Oladi, J., Hoojati, S.M. and  Mirakhorloo, Kh., 2016. Status and change detection of Mangrove forest in Qeshm Island using satellite imagery from 1988 to 2008, J. Env. Sci. Tech. 18(1). (In Persian)
Jokar sarhangi, A. and Gholami, M., 1992. The effect of land use change on increasing the rate of erosion and sediment production and suggesting suitable use in the Zaram River basin of Mazandaran using geographic information system. Geographical Research Quarterly. 3-23. (In Persian) 10.22067/GEOEH.2022.74281.1145
Jordan, A. L.,  Martinez, Z. and Bellinfante, N., 2008. Heterogeneity in soil hydrological response from different land cover types in southern Spain. Catena.74,137–143.
Karami, A. and Feghhi, J., 2012. Controlling and comparison of north and south Zagros land use using landscape ecology approach ,Case study: Provinces of Kurdistan and Kohgiloyeh and Boyer Ahmad, Journal of Town and Country Planning. 4 (6), 5-34. (In Persian). 10.22059/JTCP.2012.28787
Kelarestaghi, A., Ahmadi, H., Jafari, M. and Ghodoosi, J., 2008. Predicting Possible Changes in Forest Use to Deforestation Using Probabilistic Modeling in Frame Sahra WatershedMazandaran Province, Journal of Research and Construction. 21(3), 52-63. (In Persian). htpps:// 10.30466/JFRD.2021.53873.1572
Key, J.A. and Schweiger, A.J., 1989. Classification of merged AVHRR and SMMR arctic data with neural networks, Photogrammetric Engineering and Remote Sensing. 55, 1331- 1338.
Khodaie, A. and Zandi, R., 2023. Monitoring changes in vegetation cover and its relationship with surface temperature and land use in Khodaafrin and Kalibar cities using remote sensing technology, Journal of natural environment. (In Persian). 10.22059/JNE.2023.365834.2602
Knorn, J., Rabe, A., Radeloff, V.C., Kuemmerle, T., Kozak, J. and  Hostert, P., 2009. Land cover mapping of largeareas using chain classification of neighboring Landsat satellite images, Remote Sens, Environ. 113, 957- 964. DOI:10.1016/j.rse.2009.01.010
Lu, D., Mausel, P., Brondizio, E. and Moran, E., 2004. Change detection techniques. International Journal of Remote Sensing. 25(12), 2365- 2407.
Masoumi, M.T. and Moshiri, S.R., 2014. Using landscape spatial metrics and remote sensing data for spatio-temporal urban land use/cover changes analysis, A case study of Ardebil municipality, Journal of Geographical Space. 14 (45), 176-196. (In Persian).
Matsushita, B., Xu, M. and Fukushima, T., 2006. Characterizing changes in landscape structure in the lake Kasumigaura basin, Japan using a high quality GIS dataset, Journal of Landscape and Urban Planning. 78 (3), 241-250.
McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E., 2002. Fragstats: Spatial pattern analysis program for categorical maps, Oregon State University, Corvallis.
Mirzaei Mossivand, A., Ghorbani, A. and  Keivan Behjou, F., 2018. Land use-cover change detection using landsat and IRS imagery: A case study, Khalkhal county, Journal of Geographical Space. 17 (60), 101-116. (In Persian).
Othman, A. A., Al-Saady, Y. I., Al-Khafaji, A.K. and Gloaguen, R., 2014. Environmental change detection in the central part of Iraq using remote sensing data and GIS. Arabian Journal of Geosciences. 7 (3), 1017-1028.
Pakniat, D. and  Rahdari, V., 2012. Detection of land use change and land cover in the Masjid Oblast in the years 1978 to 2006 using GIS and RS, The First International Conference on Land Ecology. 29-30 Oct. (On line), (In Persian).
Prestele, R., Alexander, P., Rounsevell, M. D., Arneth, A., Calvin, K., Doelman, J. and  Havlik, P., 2016. Hotspots of uncertainty in land‐use and land‐cover change projections: a global‐scale model comparison. Global Change Biology. 22 (12), 3967-3983.
Rajesh, B. and Yuji, M., 2006. Land use change analysis using remote sensing and GIS: A Case Study of Kathmandu Metropolitan, Nepal. Research Abstracts on Spatial Information Science CSIS DAYS.
Rawat, J. S. and  Kumar, M., 2015. Monitoring land use-cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science. 18 (1), 77-84.
Roosta, Z., Darvish, S.Y. and  Falahati, F., 2012. Application of remote sensing and geographic information system in extracting land use map of Shiraz suburbs, Landuse planning. 4(6), 149-163. (In Persian) 10.36937/ben.2021.002.002
Sanjari, S. and  Boroumand, N., 2013. Monitoring land use and  land cover changes over the past three decades using RS (case study: Zarand city in Kerman province). Journal of RS and GIS application in natural resources. 4(1), 56-67. (In Persian). 10.22034/jest.2020.22762.3182
Sfougaris, A.L., Sofia G.P. and Loannis, P.I., 2014. Selecting landscape metrics as indicators of spatial heterogeneity- A comparison among Greek landscapes. International Journal of Applied Earth observation and Geoinformation. 26, 26-35.
Shirani, N. and Karimi, S., 2011. The use of GIS in the study of patterns of urban landforms, Second Planning and Environment Conference, (On line), Tehran, 16-17 May. University of Tehran. (In Persian) .
Shu, B.,  Zhu, S.,  Qu, Y.,  Zhang, H.,  Li, X. and  Carsjens, G. J., 2020. Modelling multi-regional urban growth with multilevel logistic cellular automata, Computers, Environment and Urban Systems. 80, 101457.‏
Simova, P. and Gdulova, K., 2012. Landscape indices behavior, A review of scale effects., Journal of Applied Geography. 34, 385-394. 10.1016/j.apgeog.2012.01.003
Surabuddin M. M., Sharma, N., Kappas, M. and Garg, P.K., 2013. Modeling of spatiotemporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto International. 28 (7), 632-656.
Tourian, M. J., Elmi, O., Chen, Q., Devaraju, B., Roohi, S. and Sneeuw, N., 2015. A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sensing of Environment. 156 (2), 349-360.
Turner, M. G. and Ruscher, C. L., 1988. Changes in landscape patterns in Georgia, USA. Landscape ecology.1 (4), 241-251. 10.1016/j.rse.2014.10.006
Wang, Y.,  Fan, Z., Wang, X. and  Li, J., 2008. GIS-based urban mosaic and its gradient analysis, IEEE the Second International Conference On Bioinformatics and Biomedical Engineering (ICBBE 2008), Shanghai, China. 4310-4313. 10.1109/ICBBE.2008.577