Akhtar Veisi; Hadi Veisi; Korous Khoshbakht; Reza Mirzaei Talarposhti; Reza Haghparast
Abstract
Introduction: Soil health as one of the main components to achieve sustainable agricultural systems is being adversely affected by agricultural operations such as tillage. Soil health can be quantified using the specific physical, chemical, and biological parameters of the soil via specific quantitative ...
Read More
Introduction: Soil health as one of the main components to achieve sustainable agricultural systems is being adversely affected by agricultural operations such as tillage. Soil health can be quantified using the specific physical, chemical, and biological parameters of the soil via specific quantitative soil quality methods. As a result, studying soil quality and fertility in different land management systems is essential to establish appropriate crop operations to achieve optimal production and sustainable cropping systems. Soil Management Assessment Framework (SMAF) is used as a powerful and reliable tool to assess the effect of different crop management on soil quality and health. This study aims to evaluate and quantify the effect of different tillage methods on soil quality using the SMAF algorithm.Material and methods: The present study was conducted as a field experiment based on a randomized complete block design during two cropping years in 2016-2017 and 2017-2018, in four replications. Experimental treatments included tillage methods (no-tillage, reduced tillage, and no-tillage), and the areas were considered replication. Winter wheat (Triticum aestivum L.) was planted in the first year, followed by winter chickpea (Cicer arietinum L.) in the second year of crop rotation in farmers' fields. Soil sampling from a soil depth of 0-30 cm was taken in two stages, before planting wheat at the beginning and after harvesting chickpeas in the second year. Important soil parameters were measured, including bulk density, phosphorus, potassium, acidity, electrical conductivity, soil organic carbon, carbon, microbial biomass, and microbial biomass nitrogen.Results and discussion: The results showed that implementing the conservation tillage methods improved some of the important soil parameters and soil quality index, indicating the positive effect of minimum soil disturbance and crop residue maintenance on soil quality. Although the physical and chemical properties of soil at the end of the second year did not change significantly compared to pre-treatment conditions, soil biological properties such as microbial biomass carbon and soil organic matter were positively affected by tillage systems. The laboratory-measured data of soil properties were well reflected in the SMAF algorithm. The results showed that at the end of the experiment, the soil quality index in the conventional plowing system was lower compared to conservation tillage methods. No-tillage had the highest value of soil quality index (0.65) at the end of the experiment. As stated in the quantitative description of soil properties, the higher quality index in the no-tillage method is mainly due to the improvement of soil biological conditions. Soil degradation due to excessive plowing, lack of residue preservation, and improper use of chemical fertilizers not only reduces soil organic matter but also degrades the physical properties of soil.Conclusion: In general, the results showed that conservation tillage methods could improve soil quality and efficiency in dryland areas, and the SMAF algorithm can be a useful tool to assess and monitor the soil quality of various cropping systems in dryland areas. However, citing the data of this study requires long-term results, and in order to evaluate the efficiency of the soil ecosystem to provide ecosystem services, it is necessary to compare crop systems with more sustainable systems such as forests and pastures
Afsaneh Yousefi; Reza Mirzaeitalarposhti; Fatemeh-Sadat Aghamir; Jafar Nabati
Abstract
Introduction: Economic problems caused by increased consumption of fertilizers from one hand and environmental issues related to non-scientific consumption of such fertilizers (e.g., pollution of water and soil, loss of soil fertility, and crop quality) on the other hand, have shifted attentions towards ...
Read More
Introduction: Economic problems caused by increased consumption of fertilizers from one hand and environmental issues related to non-scientific consumption of such fertilizers (e.g., pollution of water and soil, loss of soil fertility, and crop quality) on the other hand, have shifted attentions towards application of biological fertilizers. In order to reduce environmental pollution and ecological damage caused by the use of chemical fertilizers, there is a need to use resources and inputs, which not only meet crop nutrient requirements, but also guarantee the long-term sustainability of agricultural systems. The purpose of this study was to reduce the harmful effects of chemical fertilizers on the agroecosystem and to reduce the cost associated with crop production through application of biofertilizers (free-living nitrogen-fixating bacteria, and potassium and phosphate solubilizing bacteria) on mung bean. Material and methods: A field experiment was carried out as a randomized complete block design with factorial arrangement of treatments. Two mung bean genotypes (Dezfouli and Indian) were planted under six fertilization systems at the Agricultural Research Station of Ferdowsi University of Mashhad, Iran in 2017. Fertilization treatments were Nitro Bacteria (NB), Phosphate Power Bacteria (PhPB), Potassium Power Bacteria (PPB), NB+PhPB+PPB, chemical nitrogen fertilizer (N), and no fertilizer as control (C). Prior to planting, the soil was sampled at a depth of 0-30 cm for measurement of common physico-chemical characteristics. At the end of the growing season, an area of 1 m2 from the middle of each plot was harvested for crop traits. Plant height, the number of branches per plant, grain yield, biological yield, and yield components including the number of pods per plant, the number of seeds per pod, and 100-seed weight were measured accordingly. Results and discussion: The results showed a significant difference between mung bean genotypes and also fertilization treatments regarding yield and yield components (p < 0.05). The highest biological yield (6555 kg ha-1 ) and grain yield (1558 kg ha-1 ) were obtained from Dezfouli genotype under NPB+PhPB+PPB treatment. The lowest biomass and grain yield were observed for Indian genotype under control treatment with 3518 and 1393 kg ha-1 , respectively. The results showed that the combined application of nitrogen stabilizing bacteria and potassium and phosphate release bacteria, due to increased access to nutrients that is an effective factor in stimulating the growth and photosynthesis of plants, improved conditions for growth and production of photosynthetic materials, and also increased the yield of mung bean plants. Conclusion: It was revealed that the combined application of various biofertilizers not only improves the mung bean yield, but also can reduce negative aspects of chemical fertilizer application in crop production systems. Paying attention to more frequent use of biological fertilizers could be considered as an important agroecological approach, which results in healthier soil and water resources.