Akbari, S., Karimi, A. and Lakzian, A., 2022. Pedogenesis and distribution of Ni and Cr in an ultramafic soil toposequence under arid climate. Eurasian Soil Science. 55, 520–532. https://doi.org/10.1134/S1064229322040020.
Alloway, B.J., 2013. Sources of heavy metals and metalloids in soils. In: Alloway, B.J. (Eds). Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability. Springer-Verlag, Dordrecht, the Netherlands, pp.11-50.
Bertoldo, L.A., Ribeiro, A. and Reis, C.E.S., 2023. Environmental risk assessment of potentially toxic elements in Doce River watershed after mining sludge dam breakdown in Mariana, MG, Brazil. Environmental Monitoring and Assessment. 195, 539-545. https://doi.org/10.1007/s10661-023-11080-5.
Bowen, H.J.M., 1979. Environmental Chemistry of the Elements. Academic Press, London, UK.
Huang, C., Guo, Z., Li., T., Xu, R., Peng, C. and Gao, Z., 2023. Source identification and migration fate of metal(loid)s in soil and groundwater from an abandoned Pb/Zn mine. Science of the Total Environment. 895, 165037. https://doi.org/10.1016/j.scitotenv.2023.165037.
Jiang, H.H., Cai, L.M., Wen, H.H., Hu, G.C., Chen, L.G. and Luo, J., 2020. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of the Total Environment. 701, 134466. https://doi.org/10.1016/j.scitotenv.2019.134466.
Kabata-Pendias, A. and Mukherjee, A.B., 2007. Trace elements from soil to human. Springer Science and Business Media, Heidelberg, Germany.
Kabata-Pendias A. and Pendias, H., 2001. Trace elements in soils and plants. CRC Press, Washington, USA.
Kumari, N. and Mohan, C., 2021. Basics of clay minerals and their characteristic properties. Clay Mineralogy. 1–29. https://doi.org/10.1016/B978-0-323-91858-9.00004-5.
Kharvi, A., 2011. Estimate deep percolation plain and its impact on wells of piezometers -A case of study in Jovain plain. Ms.c Thesis. Ferdowsi University of Mashhad, Mashhad, Iran
Li, Y., Ajmone-Marsan, F. and Padoan, E., 2023. Combining DGT with bioaccessibility methods as tool to estimate potential bioavailability and release of PTEs in the urban soil environment. Science of The Total Environment. 857, 159597. https://doi.org/10.1016/j.scitotenv.2022.159597.
Liu, W., Hu, T., Mao, Y., Shi, M., Cheng, C., Zhang, J., Qi, S., Chen, W. and Xing, X., 2022. The mechanistic investigation of geochemical fractionation, bioavailability and release kinetic of heavy metals in contaminated soil of a typical copper-smelter. Environmental Pollution. 306, 119391. https://doi.org/10.1016/j.envpol.2022.119391.
Martin, A.P., Lim, C., Kah, M., Rattenbury, M.S., Rogers, K.M., Sharp, E.L. and Turnbull, R.E., 2023. Soil pollution driven by duration of urbanization and dwelling quality in urban areas: An example from Auckland, New Zealand. Applied Geochemistry. 148, 105518. https://doi.org/10.1016/j.apgeochem.2022.105518.
Morrison, J., Goldhaber, M., Mills, Christopher, Breit, G., Hooper, R., Holloway, J., Diehl, S. and Ranville, J., 2015. Weathering and transport of chromium and nickel from serpentinite in the coast range ophiolite to the Sacramento Valley, Ca, USA. Applied Geochemistry. 61, 72-86. https://doi.org/10.1016/j.apgeochem.2015.05.018.
Müller, G., 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal. 2, 108–118. https://doi.org/10.1007/s10661-007-9678-2.
Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. American Society of Agronomy Inc, Wisconsin, pp.181–197.
Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C. and Chambers, B.J., 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment. 311, 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6.
Park, H.J., Kim, S.U., Jung, K.Y., Lee, S., Choi, Y.D., Owens, V.N., Kumar, S., Yun, S.W. and Hong, C.O., 2021. Cadmium phytoavailability from 1976 through 2016: changes in soil amended with phosphate fertilizer and compost. Science of the Total Environment. 762, 143132. https://doi.org/10.1016/j.scitotenv.2020.143132.
Qishlaqi, A., Moore, F. and Forghani, G., 2009. Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran: a study based on multivariate data analysis. Journal of Hazardous Materials.172, 374–384. https://doi.org/10.1016/j.jhazmat.2009.07.024.
Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rugiom, R., Davidson, C., Ure, A. and Quevauiller, P.H., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring. 1, 57–61. https://doi.org/10.1039/A807854H.
Reimann, C., Filzmoser, P., Garrett, R. and Dutter. R., 2008. Statistical data analysis explained: applied environmental statistics with R. Wiley and Sons, Hoboken, New Jersey, USA.
Shan, Y., Tysklind, M. and Hao, F., 2013. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments. 13, 720–729. https://doi.org/10.1007/s11368-012-0637-3.
Sutherland, R.A., 2000. Bed sediment associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology. 39, 611–627. https://doi.org/10.1007/s002540050473.
Tessier, A., Campbell, P.G. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 51, 844–851. https://doi.org/10.1021/ac50043a017.
Tian, K., Li., M., Hu, W., Huang, B. and Zhao, Y., 2022. Environmental capacity of heavy metals in intensive agricultural soils: insights from geo-chemical baselines and source apportionment. Science of the Total Environment. 819, 153078. https://doi.org/10.1016/j.scitotenv.2022.153078.
Walkey, A. and Black, I.A., 1934. An examination of the Degtiareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science. 63, 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003.
Wang, C.C., Zhang, Q.C., Yan, C.A., Tang, G.Y., Zhang, M.Y., Ma, L.Q., Gu, R. H. and Xiang, P., 2023. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. Science of the Total Environment. 882, 163361. https://doi.org/10.1016/j.scitotenv.2023.163361.
Yang, C. Y., Nguyen, D. Q., Ngo, H. T. T., Navarrete, I. A., Nakao, A., Huang, S. T. and Hseu, Z. Y., 2022. Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia. Catena, 216, 106418. https://doi.org/10.1016/j.catena.2022.106418.
Zheng, X., Xu, W., Dong, J., Yang, T., Shangguan, Z., Qu, J., Li, X. and Tan, X., 2022. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. Journal of Hazardous Materials. 438, 129557. https://doi.org/10.1016/j.jhazmat.2022.129557.