Ashourloo, D., Shahrabi, H.S., Azadbakht, M., Aghighi, H., Matkan, A.A. and Radiom, S., 2018. A novel automatic method for alfalfa mapping using time series of landsat-8 OLI Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(11), 4478-4487.
Ashourloo, D., Shahrabi, H.S., Azadbakht, M., Aghighi, H., Nematollahi, H., Alimohammadi, A. and Matkan, A.A., 2019. Automatic canola mapping using time series of sentinel 2 images. ISPRS Journal of Photogrammetry and Remote Sensing. 156, 63-76.76.
Ashourloo, D., Shahrabi, H.S., Azadbakht, M., Rad, A.M., Aghighi, H. and Radiom, S., 2020. A novel method for automatic potato mapping using time series of Sentinel-2 images. Computers and Electronics in Agriculture. 175, 105583.
Azzari, G. and Lobell, D.B., 2017. Landsat-based classification in the cloud: an opportunity for a paradigm shift in land cover monitoring. In: Remote Sensing of Environment, Big Remotely Sensed Data: tools, applications and experiences. 202. pp. 64–74. https:// doi.org/10.1016/j.rse.2017.05.025.
Bargiel, D., 2017. A new method for crop classification combining time series of radar images and crop phenology information. Remote sensing of environment 198, 369-383.
Boryan, C., Yang, Z., Mueller, R. and Craig, M., 2011. Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, and cropland data layer program. Geocarto International. 26(5), 341-358.
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B. and Li, Z., 2018. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote sensing of environment. 210, 35-47.
Esch, T., Metz, A., Marconcini, M. and Keil, M., 2014. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. International Journal of Applied Earth Observation and Geoinformation. 28, 230-237.
Foerster, S., Kaden, K., Foerster, M. and Itzerott, S., 2012. Crop type mapping using spectral–temporal profiles and phenological information. Computers and Electronics in Agriculture. 89, 30-40.
Gadiraju, K.K. and Vatsavai, R.R., 2020. Comparative analysis of deep transfer learning performance on crop classification, Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 1-8.
Gholampur, A., 2008. A novel algorithm for detecting wheat and barley. M.Sc. Thesis. Shahid Beheshti University, Tehran, Iran.
Goodarzdashti, S., 2021. Automatic crop detection based on phenological information using Google Earth Engine. M.Sc. Thesis. Shahid Beheshti University, Tehran, Iran.
Huang, B., Zhao, B. and Song, Y., 2018. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environment. 214, 73-86.
Johnston, B.F. and Kilby, P., 1982. Unimodal and bimodal strategies of agrarian change. Rural development: theories of peasant economy and agrarian change. London: Hutchinson Publishing Group.
Kang, Y., Khan, S. and Ma, X., 2009. Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science 19, 1665-1674.
Khatami, R., Mountrakis, G. and Stehman, S.V., 2017. Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sensing of Environment 191, 156-167.
King, L., Adusei, B., Stehman, S.V., Potapov, P.V., Song, X.-P., Krylov, A., Di Bella, C., Loveland, T.R., Johnson, D.M. and Hansen, M.C., 2017. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sensing of Environment 195, 13-29.
LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature. 521, 436-444.
Mingwei, Z., Qingbo, Z., Zhongxin, C., Jia, L., Yong, Z. and Chongfa, C., 2008. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. International Journal of Applied Earth Observation and Geoinformation. 10, 476-485.
Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E. and Six, J., 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment. 115, 1301-1316.
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M. and Rieseberg, L.H., 2018. Trends in global agricultural land use: implications for environmental health and food security. Annual review of plant biology. 69, 789-815.
Sandborn, A., Mueller, R., Boryan, C., Johnson, D., Yang, Z., Ebinger, L., Rosales, A., Willis, P., Seffrin, R., Jennings, R., Deaton, M. and Hamer, H., 2019.
NASS Geospatial Applications from the Cropland Data Layer. ISI World Statistics Conference, Malaysia, Aug 18-23, 2019. Posted 8/21/2019.
Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., Skakun, S., 2017. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17.
Zheng, B., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M., 2015. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation 34, 103-112.
Zhong, L., Hu, L., Zhou, H., 2019. Deep learning based multi-temporal crop classification. Remote sensing of environment 221, 430-443.
Zhong, L., Hu, L., Zhou, H., Tao, X., 2019b. Deep learning based winter wheat mapping using statistical data as ground references in Kansas and northern Texas, US. Remote Sens. Environ. 233, 111411. https://doi.org/10.1016/j.rse.2019.111411.
Xu, J., Zhu, Y., Zhong, R., Lin, Z., Xu, J., Jiang, H., Huang, J., Li, H., Lin, T., 2020. DeepCropMapping: A multi-temporal deep learning approach with improved spatial generalizability for dynamic corn and soybean mapping. Remote Sensing of Environment 247, 111946.