Ababaei, B. and Chenu, K., 2020. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agricultural and Forest Meteorology. 284. https://doi.org/10.1016/j.agrformet.2019.107889
Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. and Andarzian, B., 2015. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. Journal of the Saudi Society of Agricultural Sciences. 14, 189–199. https://doi.org/10.1016/j.jssas.2014.04.004
Deihimfard, R., Rahimi-Moghaddam, S., Eyni-Nargeseh, H. and Collins, B., 2023. An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions. European Journal of Agronomy. 147. https://doi.org/10.1016/j.eja.2023.126848
Dreesen, F.E., De Boeck, H.J., Janssens, I.A. and Nijs, I., 2012. Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environmental and Experimental Botany. 79, 21–30. https://doi.org/10.1016/j.envexpbot.2012.01.005
Eyni Nargeseh, H., Deihimfard, R., Soufizadeh, S., Haghighat, M. and Nouri, O., 2016. Predicting the effects of climate change on irrigated wheat yield in Fars province using APSIM model. Electronic Journal of Crop Production. 8 (4), 203-224. (In Persian with English Abstract)……….
Lamaoui, M., Jemo, M., Datla, R., and Bekkaoui, F., 2018. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry. 6. https://doi.org/10.3389/fchem.2018.00026
Mccown, R.L., Hammer, G.L., Hargreaves, J.N.G., Holzworth, D., and Huth, N.I., 1995. APSIM: an agricultural production system simulation model for operational research, Mathematics and Computers in Simulation. 39 (3-4), 225-231. https://doi.org/10.1016/0378-4754(95)00063-2
Pradhan, G.P., Prasad, P.V.V., Fritz, A.K., Kirkham, M.B., and Gill, B.S., 2012. Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology. 39, 190–198. https://doi.org/10.1071/FP11245
Rahimi-Moghaddam, S., Deihimfard, R., Azizi, K., and Roostaei, M., 2021. Characterizing spatial and temporal trends in drought patterns of rainfed wheat (Triticum aestivum L.) across various climatic conditions: A modelling approach. European Journal of Agronomy 129. https://doi.org/10.1016/j.eja.2021.126333
Sharifi-Haddad, N., Deihimfard, R., Noori, O., and Rahimi Moghaddam, S., 2021. Simulating grain yield and water use efficiency in dominant maize cultivars under water limited and climate change conditions (In Persian with English Abstract). Agroecology 13 (1): 103-115.
Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Ghassemi, S., Vadez, V., Sinclair, T.R., and van Ittersum, M.K., 2020. Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems. 183. https://doi.org/10.1016/j.agsy.2020.102859
Tefera, A.T., O’Leary, G.J., Rao, S., Shunmugam, A.S.K., Silva-Perez, V., Brand, J., and Rosewarne, G.M., 2024. Identification of agro-phenological traits of lentil that optimise temperature and water limited flowering time and seed yield. European Journal of Agronomy 155. https://doi.org/10.1016/j.eja.2024.127138
Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R., 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany. 61 (3), 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
Wang, B., Liu, D.L., Asseng, S., Macadam, I., and Yu, Q., 2015. Impact of climate change on wheat flowering time in eastern Australia. Agricultural and Forest Meteorology. 209–210, 11–21. https://doi.org/10.1016/j.agrformet.2015.04.028
Wollenweber, B., Porter, J.R., and Schellberg, J., 2003. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. 189 (3), 142-50. https://doi.org/10.1046/j.1439-037X.2003.00025.x