Document Type : Original Article
Authors
1
Department of Environmental Civil Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
2
Department of Energy Conversion, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
Abstract
Introduction:
Many pollutants in industrial wastewaters, such as dyes, can't be removed easily by the conventional physical, biological and chemical purification processes, because of their complexity and intractability. Therefore, it is necessary to find an effective treatment technology that can degrade complex bio-refractory molecules or can breakdown them into smaller molecules which can be further degraded by conventional methods. Cavitation is one such recent technique which has been extensively studied for the treatment of complex wastewater due to its ability of generating highly reactive free radicals. Hydrodynamic cavitation has a potential of application on larger scale due to its capability in generating hydroxyl radicals at ambient condition, easy scale up and less material cost making it more economical to employ. The purpose of this study was application of hydrodynamic cavitation process for removing Reactive Black 5 and optimization the affecting parameters (pH, inlet pressure, hole diameter and initial concentration of dye) based on the amount of efficiency and energy consumption.
Material and methods:
In this research, removal of Reactive Black 5 with the use of hydrodynamic cavitation process was studied. 8.25 liters of colored solution was examined in each test. The cavitation was produced by orifice plate and pump. In order to optimize process, various trials were performed in pH of 3 to 11 and also using different orifice plates with hole diameter of 2, 3, 5 and 7 mm at inlet pressures of 2, 3, 4 and 5 bar and dye concentration of 30, 50 and 100 ppm. Due to the constant voltage of urban electricity, the electric current was measured as an indicator of energy consumption by ammeter.
Results and discussion:
According to the results by reducing the pH, dye removal was increased and orifice plates with larger hole diameter in upper pressures had better efficiency. It was observed that increasing the initial concentration of dye resulted in decreasing dye removal efficiency. The orifice with 7 mm hole diameter at 5 bar inlet pressure yielded the highest efficiency, but by involving the amount of energy consumed and considering the process efficiency to energy consumption, the orifice with 7 mm hole diameter at 4 bar inlet pressure was chosen as the best. The pH of 3, orifice with 7 mm hole diameter at 4 bar pressure and initial concentration of 30 ppm (with regards to pump energy consumption obtained from measuring the electrical current and the efficiency of process) were selected as optimum conditions. In these conditions after 120 minutes, 38.21% dye removal was obtained using hydrodynamic cavitation.
Conclusion:
Hydrodynamic cavitation has a potential of application on larger scale due to its capability in generating hydroxyl radicals at ambient condition. It was found that the energy consumption was an effective factor in selecting the optimum conditions. By reducing the initial dye concentration and pH, dye removal was increased and orifice plates with larger hole diameter in upper pressures had better efficiency.
Keywords