Investigation of Diameter and Aerodynamic Weight Distribution and Atmospheric Particle Shapes Within the Traffic Plan Area of Tehran

Document Type : Original Article

Author

Water, Energy and Environment Center, Faculty and Research Institute of Civil Engineering, Water and Energy, Imam Hossein Comprehensive University, Tehran, Iran

Abstract

Introduction: Implementing control plans, monitoring, and formulating traffic and management laws requires obtaining basic information about the origin of particles, physicochemical properties, and their behavior in the atmosphere. Gathering this information requires studying the various dimensions of the nature of particles, most of which will not be directly possible. The challenge of air pollution in the metropolis of Tehran requires fundamental studies, and in this study, we tried to present new dimensions of physicochemical and fundamental properties of atmospheric particles in Tehran.
 Material and methods: The particle collection process to evaluate their concentration and chemical composition was performed by a high-volume sampler for 1 to 24 hours and an average flow of 1.7 m3/min on fiberglass filters. Also, to determine the aerodynamic diameter distribution of the particles, a cascade sampler (Anderson impactor) with a flow of 28.3.3 L/min was used for 72 hours to 7 days. After sampling, the samples were prepared to determine the total concentration and aerodynamic distribution in the laboratory.
 Results and discussion: The results showed that the mean particle concentration during the sampling period was 118.6 ± 11.9 µg/m3. During the sampling period, the highest concentration of collected particles was 154.61 ± 22.1 and the lowest was 129/12 ± 23.15 µg/m3. The results of SEM analysis of the collected samples showed that the particles were present in a spherical, irregular, fibrous shape as well as crystalline shape. The predominant elements in these samples are K, Ca, Cl and Fe, which are found in combination with Ti, Zn. Cluster-like and amorphous structures rich in O, Zn, Mg, Fe, K, Si, and Na were observed in particles with dimensions of 2 to 7 micrometers.
 Conclusion: According to the results and comparison with other work done in this field, more particulate matter is emitted during fuel combustion processes by industry and urban transportation. Larger particles are also produced and emitted by vehicles, construction, and industry during human activities such as road dust.

Keywords


Alvi, M. U., Kistler, M., Shahid, I., Alam, K., Chishtie, F., Mahmud, T., et al., 2020. Composition and source apportionment of saccharides in aerosol particles from an agro-industrial zone in the Indo-Gangetic Plain. Environ. Sci. Pollut. Res. 27, 14124–14137.
Ari, P. E., Ari, A., Dumanoǧlu, Y., Odabasi, M., and Gaga, E. O., 2020. Organic chemical characterization of size segregated particulate matter samples collected from a thermal power plant area. Environ. Pollut. 262, 114360.
Adachi K, Tainosho Y., 2004. Characterization of heavy metal particles embedded in the tyre dust. Environ Int 30:1009–1017.
Aitken, J., 1923. In: Knott, C.G. (Ed.), Collected Scientific Papers of John Aitken. Cambridge University Press, London, 591 pp.
ASTM D4096-91 2003. (Reapproved 2009). Standard Test Method for Determination of Total Suspended Particulate   Matter in the Atmosphere (High-Volume Sampler Method), ASTM International, West Conshohocken, PA, 9 p.
Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M. and Armstrong, B. 2010. Urban ambient particle metrics and health: a time-series analysis. Epidemiology. 21(4): 501-511.
Bhardwaj, P., Singh, B.P., Pandey, A.K., Jain, V.K. and Kumar, K., 2017. Characterization and Morphological Analysis of summer and Wintertime PM2. 5 Aerosols over Urban-Rural Locations in Delhi-NCR. International Journal of Applied Environmental Sciences, 12(5), pp.1009-1030.
Campos-Ramos, A., Aragon-Pina, A., Galindo-Estrada, I., Querol, X., Alastuey, A., 2009. Characterization of atmospheric aerosols by SEM in a rural area in the western part of Mexico and its relation with different pollution sources. Atmospheric Environment, 43, 6159 - 6167.
Cesari, D., Merico, E., Dinoi, A., Gambaro, A., Morabito, E., Gregoris, E., Barbaro, E., Feltracco, M., Alebić-Juretić, A., Odorčić, D. and Kontošić, D., 2020. An inter-comparison of size segregated carbonaceous aerosol collected by low-volume impactor in the port-cities of Venice (Italy) and Rijeka (Croatia). Atmospheric Pollution Research, 11(10), pp.1705-1714.
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J.C., Watson, J.G., Cao, J. and Zhang, R., 2015. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, pp.96-104.
Dai, Q., Bi, X., Huangfu, Y., Yang, J., Li, T., Khan, J. Z., et al., 2019. A size-resolved chemical mass balance (SR-CMB) approach for source apportionment of ambient particulate matter by single element analysis. Atmos. Environ. 197, 45–52.
Dai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., Bi, S., Schulze, B.C., Song, C., Wu, J. and Zhang, Y., 2018. Chemical nature of PM2.5 and PM10 in Xi'an, China: Insights into primary emissions and secondary particle formation. Environmental Pollution, 240, pp.155-166.
Darrow, L.A., Klein, M., Flanders, W.D., Waller, L.A., Correa, A., Marcus, M., Mulholland, J.A., Russell, A.G. and Tolbert, P.E., 2009. Ambient air pollution and preterm birth: a time-series analysis. Epidemiology (Cambridge, Mass.). 20(5): 689.
Echlin, P. 2009. Handbook of Sample Preparation for Scanning Electron Microscopy & X-Ray Microanalysis. Cambridge Analytical Microscopy, UK.
Fecht D., Fischer P., Fortunato L., Hoek G., Hoogh K., Marra M., Kruize H., Vienneau D., Beelen R., Hansell A., 2015. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands. Environmental Pollution. 198: 201-210
Friedlander, S.K. 1961. Theoretical considerations for the particle size spectrum of the stratospheric aerosol. Am. Meteor. Soc. J. Meteor. 18, 753–759.
Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., Kiranoglu, M. and Twardella, D., 2008. Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmospheric Environment. 42(27): 6597-6605.
Goldstein, J. and et.al, 2003. Scanning Electron Microscopy & X-Ray Microanalysis. Third Edition, Kluwer academic/Plenum Publishers, NewYork Boston, Dordrecht, London, MoScow.
Geng, H., Ryu, J., Maskey, S., Jung, H.J., Ro, C.U. 2011. Characterization of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique. Atmospheric Chemistry and Physics, 11, 1327-1337.
Geng, H., Ryu, J., Maskey, S., Jung, H.J., Ro, C.U., 2011. Characterization of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique. Atmospheric Chemistry and Physics, 11, 1327-1337.
Hopke, P. K., Dai, Q., Li, L., and Feng, Y., 2020. Global review of recent source apportionments for airborne particulate matter. Sci. Total Environ. 740, 140091.
Jain, S., Sharma, S. K., Vijayan, N., and Mandal, T. K., 2020. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four-year study over Delhi. India. Environ. Pollut. 262, 114337.
Junge, C.E. 1963. Air Chemistry and Radioactivity. Academic Press, New York.
Junge, C.E. 1972. Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment.J. Geophys. Res. 77, 5183–5200.
Kelly, F.J. and Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment. 60: 504-526.
Kushwaha, R., Hazarika, N. and Srivastava, A. 2013. SEM-EDX analysis of size segregated particulate matter in Allahabad located in north India. International Journal of Advanced Research, 1(5): 248-255.
Keywood, M., Hibberd, M. F., Selleck, P. W., Desservettaz, M., Cohen, D. D., Stelcer, E., et al., 2020. Sources of Particulate Matter in the Hunter Valley. New South Wales, Australia. Atmosphere 11, 4.
Kong, S., Han, B., Bai, Z., Chen, L., Shi, J., and Xu, Z., 2010. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. Sci. Total Environ. 408, 4681–4694
Kozákovác, J., Leoni, C., Klán, M., Hovorka, J., Racek, M., Koštejn, M., Ondrácek, J., Moravec, P. and Schwarz, J., 2018. Chemical Characterization of PM1-2.5 and its Associations with PM1, PM2.5-10 and Meteorology in Urban and Suburban Environments. Aerosol and Air Quality Research, 18(7), pp.1684-1697.
Li, X., Jiang, L., Hoa, L. P., Lyu, Y., Xu, T., Yang, X., et al., 2016. Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. Atmos. Environ. 145, 115–127.
Liu, B., Sun, X., Zhang, J., Bi, X., Li, Y., Li, L., et al., 2020. Characterization and Spatial Source Apportionments of Ambient PM10 and PM2.5 during the Heating Period in Tian’jin. China. Aerosol Air Qual. Res. 20, 1–13.
Liu, L., Breitner, S., Schneider, A., Cyrys, J., Brüske, I., Franck, U., et al., 2013. Size-fractioned particulate air pollution and cardiovascular emergency room visits in Beijing. China. Environ. Res. 121, 52–63.
Mazzera DM, Lowenthal DH, Chow JC, Watson JG 2001. Sources of PM10 and sulfate aerosol at McMurdo station, Antarctica. Chemosphere 45:347–356.
Maynard, D., Coull, B.A., Gryparis, A. and Schwartz, J., 2007. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environmental health perspectives. 115(5): p.751.
Ostro, B. D., Lipsett, M. J, Mann, J K et al., 2007. Air pollution and exacerbation of asthma in African-American children in Loss Angeles. Epidemiology. 12:200-208.
Oroji, B., Solgi, E., Sadighzadeh, A. 2018a. Recognition of the Source and Nature of Atmospheric Aerosols in Tehran, Iran. Journal of Aerosol and Air Quality Research. 18(8): 2131-2140.
Oroji, B., Solgi, E., Sadighzadeh, A. 2018b. Characterization and Morphological Analysis of Aerosols in Tehran Traffic Zone. Journal of Air Pollution and Health. 3(1): 9 – 16.
Oroji, B., Solgi, E., Sedighzadeh, A. 2017. Investigation of the origin and health effects of atmospheric aerosols in Tehran. Journal of Environmental Sciences. 15 (4), 100-79.
Owoade, K. O., Hopke, P. K., Olise, F. S., Adewole, O. O., Ogundele, L. T., and Fawole, O. G. (2016). Source apportionment analyses for fine (PM2.5) and coarse (PM2.5–10) mode particulate matter (PM) measured in an urban area in southwestern Nigeria. Atmos. Pollut. Res. 7, 843–857
Pateraki, S., Asimakopoulos, D. N., Maggos, T., Assimakopoulos, V. D., Bougiatioti, A., Bairachtari, K., et al., 2020. Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere 241, 125026.
Papastefanou, C.  2008. Radioactive Aerosols. ELSEVIER. 187 p.
Pipal, Atar S., Kulshrestha, Aditi, Taneja Ajay, 2011. Characterization and morphological analysis of airborne PM2.5 AND PM10 in Agra located in north central India. Atmospheric environment 45, 3621-3630.
Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama. 287(9): 1132-1141.
Querol X, Alastuey A, Rodriguez S, Plana F, Mantilla E, Ruiz C., 2001. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos Environ 35:845–858
Ramos, A.C., Pina, A.A., Estradda, I.G et al., 2009. Characterization of atmospheric aerosols by SEM in rural area in the western part of Mexico and its relation with different pollution sources. Atmospheric Environment 43, 6159-6167.
Ramirez-Leal, R., Valle-Martinez, M. and Cruz-Campas, M., 2014. Chemical and morphological study of PM10 analysed by SEM-EDS. Open Journal of Air Pollution, 3(04), p.121.
Rodríguez, I., Galí, S., & Marcos, C., 2009. Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environmental Geology, 56(8), 1551-1561
Rivas, I., Beddows, D. C., Amato, F., Green, D. C., Järvi, L., Hueglin, C., et al., 2020. Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ. Int. 135, 105345.
Samek, L., Stegowski, Z., Styszko, K., Furman, L., and Fiedor, J., 2018. Seasonal contribution of assessed sources to submicron and fine particulate matter in a Central European urban area. Environ. Pollut. 241, 406–411.
Schlesinger, R.B., Bohning, D.E., Chan, T.L. and Lippmann, M., 1977. Particle deposition in a hollow cast of the human tracheobronchial tree. J. Aerosol Sci. 8: 429–441.
Singh, A.K., Srivastava, M.K., Singh, M., Srivastava, A.K., Sravan, K., Tiwari, S., Singh, B.P. and Bisht, D.S., 2014. Characterisation of atmospheric aerosol by SEM-EDX and Ion-chromatography techniques for eastern Indo-Gangetic plain location, Varanasi, India. International Journal of Advances in Earth Sciences, 3, pp.41-51.
Shao, L., Li, W.Y., Shi, Z.I et al., 2007. Mineralogical characteristics of individual airborne particles collected in Beijing during a severe dust storm period in spring 2002. Science in China Series D-Earth Sciences, 50 (6), pp. 953–959.
Theodosi, C., Panagiotopoulos, C., Nouara, A., Zarmpas, P., Nicolaou, P., Violaki, K., et al., 2018. Sugars in atmospheric aerosols over the Eastern Mediterranean. Prog. Oceanogr. 163, 70–81.
Tian, Y., Liu, J., Han, S., Shi, X., Shi, G., Xu, H., et al., 2018. Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China. J. Hazard. Mater. 342, 139–149.
Tian, Y. Z., Chen, G., Wang, H. T., Huang-Fu, Y. Q., Shi, G. L., Han, B., et al., 2016. Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method. Chemosphere 147, 256–263
Tian, Y. Z., Chen, J. B., Zhang, L. L., Du, X., Wei, J. J., Fan, H., et al., 2017. Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves. Chemosphere 189, 255–264.
Tasić, M., Đurić-Stanojević, B., Rajšić, S., Mijić, Z., & Novaković, V., 2006. Physico-Chemical Characterization of PM. Acta Chimica Slovenica, 53, 401-405.
Tiwari, S., Bisht, D. S., Srivastava, A. K., Pipal, A. S., Taneja, A., Srivastava, M. K., & Attri, S. D., 2014. Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmospheric Research, 145, 45-56.
Tiwari, S., Pipal, A. S., Hopke, P. K., Bisht, D. S., Srivastava, A. K., Tiwari, S., ... & Pervez, S., 2015. Study of the carbonaceous aerosol and morphological analysis of fine particles along with their mixing state in Delhi, India: a case study. Environmental Science and Pollution Research, 22(14), 10744-10757.
Vakeva M, Hameri K, Kulmala M, Lahdes R, Ruuskanen J, Laitinen T., 1999. Street level versus roof top concentrations of submicron aerosol particles and gaseous pollutants in an urban street canyon. Atmos Environ 33:1385–1397
Viana M, Querol X, Alastuey A., 2006. Chemical characterization of PM episodes in North-Eastern Spain. Chemosphere 62:947–956
Viana, M., Rivas, I., Querol, X., Alastuey, A., Sunyer, J., Álvarez-Pedrerol, M., Bouso, L. and Sioutas, C., 2013. Indoor/outdoor relationships of quasi-ultrafine, accumulation and coarse mode particles in school environments in Barcelona: chemical composition and sources. Atmospheric Chemistry & Physics Discussions, 13(12).
Whitby, K.T., Clark, W.E., Marple, V.A., Sverdrup, G.M., Sem, G.J., Willeke, K., Liu, B.Y.H. and Pui, D.Y.H. 1975. Characterization of California aerosols—1. Size distribution of freeway aerosol. Atmos. Environ. 9: 463–482.
Whitby, K.T., Husar, R.B., Liu, B.Y.H., 1972. The aerosol size distribution of Los Angeles smog. J. Colloid Interface Sci. 39, 177–204.
Zhou, W., 2006. Scanning Microscopy for Nanotechnology Techniques & Applications” University of New Orleans.
Zalakeviciute, R., Rybarczyk, Y., Granda-Albuja, M. G., Suarez, M. V. D., and Alexandrino, K., 2020. Chemical characterization of urban PM10 in the Tropical Andes. Atmos. Pollut. Res. 11
Zhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., et al., 2018. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 630, 72–82.