Ali, M., Kamal, M.D., Tahir, A. and Atif, S., 2021. Fuel consumption monitoring through COPERT model—A case study for urban sustainability. Sustainability. 13(21),11614.DOI:10.3390/su132111614.
Alipourmohajer, S., Rashidi, Y. and Atabi, F., 2019. Verification of IVE model for SAIPA Co. Fleet Emission. Pollution. 5(2), 235-245.DOI: 10.22059/POLL.2018.256405.431.
Bernard, Y., Tietge, U., German, J. and Muncrief, R., 2018. Determination of Real-World Emissions from Passenger Vehicles Using Remote Sensing Data. The Real Urban Emissions Initiative: London, UK.
Bishop, G.A., Stedman, D.H., Burgard, D.A. and Atkinson, O., 2016. High-mileage light-duty fleet vehicle emissions: Their potentially overlookedimportance. Environmental Science and Technology. 50(10), 5405-5411.DOI:10.1021/acs.est.6b00717.
Cuba, C., Cuba, R., Arroyo, V., & Morales, J. (2021). Characterization of air pollution in pre-COVID 19 time using the IVE model applied to mobile sources in urban areas. In IOP Conference Series: Earth and Environmental Science, Vol. 943(1), p. 012003. IOP Publishing.
Dong, Y. and Xu, J., 2020. Estimation of vehicle carbon emissions in China accounting for vertical curve effects. Mathematical Problems in Engineering. 20(2). 1-20.DOI:10.1155/2020/1595974.
Ghaffarpasand, O., Talaie, M.R., Ahmadikia, H., Khozani, A.T. and Shalamzari, M.D., 2020. A high-resolution spatial and temporal on-road vehicle emission inventory in an Iranian metropolitan area, Isfahan, based on detailed hourly traffic data. Atmospheric Pollution Research. 11(9), 1598-1609.DOI: 10.1016/j.apr.2020.05.014.
Ghaffarpasand, O., Talaie, M.R., Ahmadikia, H., TalaieKhozani, A., Shalamzari, M.D. and Majidi, S., 2021. How does unsustainable urbanization affect driving behavior and vehicular emissions? Evidence from Iran. Sustainable Cities and Society. 72, 103065.DOI: 10.1016/j.scs.2021.103065.
Hirahara, Y., Rosnay, P.D. and Arduini, G., 2020. Evaluation of a microwave emissivity module for the snow-covered area with CMEM in the ECMWF integrated forecasting system. Remote Sensing. 12(18), 29-46.
DOI: 10.3390/rs12182911.
Jamshidi Kalajahi, M., Khazini, L., Rashidi, Y. and Zeinali Heris, S., 2020. Development of reduction scenarios based on urban emission estimation and dispersion of exhaust pollutants from light duty public transport: case of Tabriz, Iran. Emission Control Science and Technology. 6, 86-104. DOI: 10.1007/s40825-020-00177-1.
Kii, M., 2020. Reductions in CO2 emissions from passenger cars under demography and technology scenarios in Japan by 2050. Sustainability. 12(17), 6919.DOI: 10.3390/su12176919.
Le Hong, Z. and Zimmerman, N., 2021. Air quality and greenhouse gas implications of autonomous vehicles in Vancouver, Canada. Transportation Research Part D: Transport and Environment. 90, 102676. DOI: 10.1016/j.trd.2021.102676.
Leung, K.W., 2019. Development and assessment of high-resolution vehicle emission inventory in Hong Kong (Doctoral dissertation).
Li, X., Hu, Z., Cao, J. and Xu, X., 2022. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy. 161, 112-733.10. DOI: 1016/j.enpol.2022.112733.
MÄ…dziel, M., Campisi, T., Jaworski, A. and Tesoriere, G., 2021. The development of strategies to reduce exhaust emissions from passenger cars in Rzeszow city—Poland. a preliminary assessment of the results produced by the increase of e-fleet. Energies. 14(4), 1046.
Sanches, M.F., Oliveira, M.V.R., Ciceri, O.J., Ladeira, L.Z., Garcia, I.C., Da Fonseca, N.L. and Villas, L.A., 2021. July). EFIS-Ecological Fuel-consumption Intelligent System. In 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS) (pp. 117-123). IEEE.DOI:10.1109DCOSS52099.2021.00027.
Shahbazi, H., Reyhanian, M., Hosseini, V. and Afshin, H., 2016. The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach. Emission control science and Technology. 2, 44-56.
Singh, H. and Kathuria, A., 2021. Analyzing driver behavior under naturalistic driving conditions: A review. Accident Analysis and Prevention. 150, 105908.DOI: 10.1016/j.aap.2021.105908.
Suarez-Bertoa, R., Valverde, V., Clairotte, M., Pavlovic, J., Giechaskiel, B., Franco, V. and Astorga, C., 2019. On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environmental research, 176, 108572.DOI: 10.1016/j.envres.2019.108572.
Wondifraw, B. A., Lemma, D. G. and Aschalwe, E.T., 2018. Estimation of exhaust emission from road transport using COPERT software.
Yu, Z., Li, W., Liu, Y., Zeng, X., Zhao, Y., Chen, K. and He, J., 2021. Quantification and management of urban traffic emissions based on individual vehicle data. Journal of Cleaner Production. 328, 129-386. DOI: 10.1016/j.jclepro.2021.129386.
Zhong, M., Saikawa, E., Avramov, A., Chen, C., Sun, B., Ye, W. and Panday, A.K., 2019. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics. 19(12), 8209-8228.DOI: 10.5194/acp-19-8209-2019.
Zhou, Z., Tan, Q., Liu, H., Deng, Y., Wu, K., Lu, C. and Zhou, X., 2019. Emission characteristics and high-resolution spatial and temporal distribution of pollutants from motor vehicles in Chengdu, China. Atmospheric Pollution Research. 10(3), 749-758.DOI: 10.1016/j.apr.2018.12.010.