نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

2 مرکز تحقیقات پسماند و پساب، دانشگاه آزاد اسلامی، واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

سابقه و هدف:
دردهه‌های اخیر، افزایش جمعیت، رشد سریع صنعتی شدن، افزایش آلودگی هوا در ترازهای پایین جو و آثار جزیره گرمایی، سبب تغییر­های قابل ملاحظه­  ای در وضع هوا و اقلیم محلی شهرهای بزرگ شده است. آثار محیط‌های شهری روی جو بیشتر بصورت جزیره‌های گرمایی ظاهر می‌شوند. فضای سبز با کاهش دما و افزایش رطوبت و در نهایت کاهش پدیده‌ی جزیره‌ی حرارتی و همچنین کاهش رواناب، در ارتقای سطح آسایش شهروندان و در نهایت پایداری محیط شهری موثر خواهد بود. هدف این مطالعه تهیه نقشه‌های کاربری زمین و سنجه پوشش گیاهی تفاضلی نرمال شده NDVI و نیز سنجه حرارتی  Land surface temperature (LST) و بررسی نحوه توزیع الگوهای حرارتی سطح زمین و تغییر­های زمانی و مکانی ‌پوشش گیاهی و ارتباط آن‌ها در شهر اصفهان از سال 1985 تا 2016 است.
مواد و روش­ها:
بدین منظور، تصویر­های ماهواره‌ای سنجنده‌های TM  و OLI ماهواره لندست از سایت سازمان زمین شناسی ایالت متحده دانلود گردید. با بکارگیری سه تصویر مربوط به سال‌های 1985، 2010 و 2016، مقدار سنجه پوشش گیاهی تفاضلی نرمال شده با استفاده از نرم افزار Terrset کمی گردید و نقشه‌های آن تهیه شد. سپس با تهیه نقشه کاربری زمین ­ها به روش طبقه‌بندی نظارت شده حداکثر احتمال به آنالیز روند تغییر­های کاربری هایی از قبیل (شهر، جاده، مزارع کشاورزی، زمین­ های بایر، رودخانه، کوه و فضای سبز) پرداخته شد. در نهایت برای ارزیابی دمای سطح زمین (LST) و رابطه آن با نقشه پوشش گیاهی، از الگوریتم استخراج دمای سطح زمین (LST) استفاده گردید و نقشه‌های حرارتی سطح زمین برای شهر اصفهان برای سال‌های 1985، 2010 و 2016 تهیه شد.
نتایج و بحث:
روند تغییر­های کاربری زمین­ های مختلف در منطقه مورد مطالعه نشان داد که در دوره موردمطالعه، تخریب شدید در پوشش سبز منطقه رخ داده و بخش عمده این تغییر­ها در جهت تبدیل شدن به منطقه­ های شهری بوده است. همچنین، نتایج حاصل نشان دهنده وجود یک رابطه معکوس بین دمای سطح زمین و سنجه NDVI است. نتایج بیانگر پیشرفت جزایر حرارتی شهری به سمت منطقه ­هایی است که با فقر پوشش گیاهی و توسعه کاربری‌های ساخت و ساز شده (مسکونی، صنعتی و ...) مواجه بوده ­اند. همچنین نتایج گویای تسریع افزایش دما در سال­ های اخیر نسبت به سال‌های گذشته است زیرا افزایش متوسط دمای سالانه در بازه زمانی 2010 تا 2016، 0.61 درجه سانتی گراد بود، در حالی که افزایش متوسط دما به میزان 0.05 درجه سانتیگراد از سال 1985 تا 2010 مشاهده گردید.
نتیجه­ گیری:
تحلیل تغییر­های زمانی جزایر حرارتی شهر اصفهان گویای افزایش جزایر گرمایی و کاهش فضایی منطقه ­های خنک شهری می ­باشد. می‌توان نتیجه گرفت که تغییرهایی که در این بازه زمانی 30 ساله (1985-2016) در زمینه‌های مختلفی از جمله افزایش جمعیت، افزایش مساحت شهری و تغییر کاربری رخ داده در نهایت سبب افزایش مساحت منطقه­ های داغ و ایجاد جزیره حرارتی در این شهر گشته است. بدلیل وجود همبستگی بین دمای سطح زمین وسنجه پوشش گیاهی تفاضلی نرمال شده NDVI  ، لزوم و اهمیت حفاظت و نگهداری کاربری پوشش گیاهی و فضای سبز به ویژه در محیط‌های شهر  بعنوان یک متغیر بسیار مهم برای تعدیل شرایط آب و هوایی برای نهادهای مسئول در مدیریت شهری ضروری به نظر می‌رسد. نتایج حاصل از این مطالعه می‌تواند دیدگاهی برای مدیریت دقیق و موثر پوشش گیاهی شهری با هدف اصلاح و تغییر روند ایجاد جزایر حرارتی شهری در اختیار برنامه‌ریزان شهری قرار دهد.

کلیدواژه‌ها

عنوان مقاله [English]

The relationship between urban vegetation and land surface temperature in Isfahan city using Landsat TM and OLI satellite images and LST index

نویسندگان [English]

  • Marzieh Niliyeh Brojeni 1
  • Mozhgan Ahmadi Nadoushan 2

1 Department of Environmental science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2 Waste and wastewater research center, Isfahan (Khorasgan) Branch, Islamic Azad University, , Isfahan, Iran

چکیده [English]

Introduction:
During the past decades, population growth, rapid industrialization, increased air pollution at low levels of the atmosphere, and the impact of heat island have caused dramatic changes in the local climate of the big cities. The release of heat energy increased greenhouse gas emissions, and land use change are among the main causes of local climate change in cities. The effects of urban environments on the atmosphere appear more often as thermal islands. Green space would be effective in reducing the temperature and increasing the humidity, and finally reducing the thermal island phenomenon as well as reducing runoff, improving the comfort of the citizens and, ultimately, the sustainability of the urban environment. The objectives of this study were to prepare land use maps and NDVI vegetation index, as well as land surface temperature maps, and to study the distribution of thermal patterns of land surface and temporal and spatial variations of vegetation and their relation in Isfahan from 1985 to 2016.
Material and methods:
For this purpose, satellite imagery was downloaded from the US Geological Survey site. Using the three Landsat satellite TM images of August 1985, 2010, and 2016, the NDVI index was quantitated using Terrset software, and their maps were prepared. Then, by generating land use maps using the maximum likelihood supervised classification method, the analysis of the changes in land uses (such as city, road, agricultural fields, barren lands, river, mountains, and green spaces) was done. Finally, Land Surface Temperature (LST) index was used to estimate the land surface temperature (LST) and its relationship with the vegetation maps.
Result and discussion:
The trend of land use/cover changes in the study area showed that during the study period, severe degradation occurred in the green space of the area and the main part of these changes was the conversion of green spaces to urban areas. Also, the results indicated an inverse relationship between LST and NDVI index. The results showed that the growth of urban heat islands was toward areas that had encountered poor vegetation and developed constructional uses (residential, industrial, etc.). The results also indicate an accelerated increase in temperature in recent years compared to previous years, as the average annual temperature increase in the period from 2010 to 2016 was 0.61 °C, while the average temperature increase of 0.05 °C was observed from1985 to 2010.
Conclusion:
The analysis of the changes in thermal islands of Isfahan was indicative of the increase of thermal islands and spatial reduction in urban cool areas. It can be concluded that the changes occurred in this 30-year period (1985-2016) in various aspects, such as population increase, urban area increase, and land use change eventually increased the area of hot spots. Because of the correlation between surface temperature and NDVI vegetation index, the necessity of protecting vegetation and green space, especially in urban areas, is a critical variable for climate change modification for responsible institutions in urban management. The results of this study could provide critical insights on precise and effective urban vegetation management with the purpose of Urban Heat Island mitigation for urban planners and managers.

کلیدواژه‌ها [English]

  • Isfahan
  • Land Surface Temperature
  • NDVI index
  • Urban heat island

Ahmadi, M., Samadi Khadem, S. and Dargahi, A., 2014. Exploration the importance of green space in controlling and reducing the air pollution of urban areas. International conference of environmental planning and management, Tehran, Iran.

Acero, J.A. and Gonzalez-Asensio, B. 2018. Influence of vegetation on the morning land surface temperature in a tropical humid urban area. Urban Climate. 26, 231-243.

Adeyeri O.E., Akinsanola, A.A. and Ishola K.A. 2017. Investigating Surface Urban Heat Island Characteristics over Abuja, Nigeria: relationship between land surface temperature and multiple vegetation indices. Remote Sensing Applications: Society and Environment. 7, 57-68.

Amanollahi, J., Tzanis, C., Ramli, M.F. and Abdullah, A.M. 2016. Urban heat evolution in a tropical area utilizing Landsat imagery. Atmospheric Research. 167, 175-182.

Ataei, H. and Hasheminasab, S., 2015. Evaluation and zoning of air pollution in Isfahan using ArcGIS software. 1st national conference on environmental science, Payam noor university, Isfahan, Iran.

Bihamta, N., Soffianian, A. and Fakheran, S. 2014. Analysis of land cover change in the central area of Isfahan using landscape metrics. Applied Ecology. 77, 69-87.

Bokaie, M., Kheirkhah Zarkesh, M., Daneshkar Arasteh, P. and Hosseini, A. 2016. Assessment of Urban Heat Island based on the relationship betweenland surface temperature and Land Use/ Land Cover in Tehran. Sustainable Cities and Society. 23, 94–104.

Butt, A., Shabbir, R. Ahmad, S.S. and Aziz, N. 2015. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science. 18(2), 251-259.

Charabi, Y. and Bakhit, A. 2011. Assessment of the canopy urban heat island of a coastal arid tropical city: The case of Muscat, Oman. Atmospheric Research. 101(1-2), 215-227.

De Ridder, K., Adamec, V., Banuelos, A., Bruse, M., Burger, M., Damsgaard, O., Dufek, J., Hirsch, J., and Lefebre, F., 2011. An integrated methodology to assess the benefits of urban green space. Science of the Total Environment. 335, 489-495.

Eldevik. T., Bjorg, R. and Anne, E., 2014. A brief history of climate in the northern seas from the Last Glacial Maximum to global warming. Journal of Quaternary Science Reviews. 106, 225-246.

Fathizad, H., Tazeh, M., Kalantari, S. and Shojaei, S. 2017. The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran. Journal of African Earth Sciences. 134, 249-256.

Ferreira, S. L. and Duarte, D.H.S. 2019. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban Climate, 27, 105-123.

Ghorbnnia Kheybari, V., Mirsanjari, M.M. Liaghati, H. and Armin, M., 2017. Land surface temperature estimation of land use and land cover in Dena county using single window algorithm and data of Landsat 8 satellite. Environmental Sciences. 15(2), 55-74.

Herehe, M. E. 2017. Effect of land use/cover change on land surface temperatures - The Nile Delta, Egypt. Journal of African Earth Sciences. 126: 75-83.

Huang, J.B., Wang, Sh., Lue, Y., Zhao, Z. and Wen, X., 2012. The Science of Global Warming. Journal of Advances in Climate Change Research. 3, 174-178.

Islam, M. S. and Islam, K. S. 2013. Application of thermal infrared remote sensing to explore the relationship between land use-land cover changes and urban heat Island effect: a case study of Khulna City. Journal of Bangladesh Institute of Planners. 6, 49-60.

Jajarmi, K., Pishgahifard, Z., Mahkouei, H., 2014. Assessment of Environmental Threats in Iran's National Security. Rahbord Journal. 67, 193-230.

Jeevalakshmi, D., S. Reddy and Manikiam, B. 2017. Land Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation. International Journal of Applied Engineering Research, 12(20), 9679-9687.

Joshi, J. P. and Bhatt, B. 2012. Estimating temporal land surface temperature using remote sensing: A study of Vadodara urban area, Gujarat. International Journal of Geology, Earth and Environmental Sciences. 2(1), 123-130.

Kayet, N., Pathak, K., Chakrabarty, A. and Sahoo, S. 2016. Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research. 24(5), 515-529.

Liu, H. and Weng, Q. 2012. Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sensing of environment. 117, 57-71.

Liu, L. and Zhang, Y. 2011. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Remote Sens. 3(7), 1535-1552.

Muro, J., Strauch, A., Heinemann, S., Steinbach, S., Thonfeld, F., Waske, B. and Diekkrüger, B. 2018. Land surface temperature trends as indicator of land use changes in wetlands. Int J Appl Earth Obs Geoinformation. 70, 62-71.

Norouzi, A. and Mohammadi, Z. 2014. Zoning of air pollution by using GIS software and air quality index in Isfahan city of Iran. Proceedings of the first National Conference on Environment in Payam Noor University. Isfahan, Iran, 10-16.

Orhan, O. and Yakar, M. 2016. Investigating Land Surface Temperature Changes Using Landsat Data in Konya, Turkey. Proceedings of The International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences. 12-19.

Pal, S. and Ziaul, S. 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban center. The Egyptian Journal of Remote Sensing and Space Sciences. 20, 125–145.

Penny, D. and Kealhofer, L. 2005. Microfossil evidence of land-use intensification in north Thailand. Journal of Archaeological Science. 32(1), 69-82.

Sahana, M., Ahmed, R. and Sajjad, H. 2016. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Modeling Earth Systems and Environment. 2(2), 81.

Singh, P., Kikon, N. and Verma, P. 2017. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable cities and society. 32, 100-114.

Statistical center of Iran, 2016. https://www.amar.org.ir/

Ukwattage, N. and Dayawansa, N. 2012. Urban Heat Islands and the Energy Demand: An Analysis for Colombo City of Sri Lanka Using Thermal Remote Sensing Data. International Journal of Remote Sensing and GIS. 1(2), 124-131.

Wang, Y. C., Hu, B.K.H., Myint, S. W., Feng, C. C., Chow, W.T.L. and Passy, P. F. 2018. Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment. 643, 738-750.

Yuan, F. and Bauer, M.E. 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of environment. 106(3), 375-386.

Zhang, Y., Balzter, H., Zou, C., Xu, H. and Tang, F., 2015. Characterizing bi-temporal patterns of land surface temperature using landscape metrics based on sub-pixel classifications from Landsat TM/ETM+. International Journal of Applied Earth Observation and Geoinformation. 42, 87-96.