نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مهندسی معدن، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران
2 گروه زمین شناسی کاربردی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران
3 مدیریت پسماند حفاری، شرکت سیالات حفاری پارس، تهران، ایران
چکیده
سابقه و هدف: فرآیند استخراج و بهره برداری از منابع نفت و گاز به چرخه تولید، ارسال و بازیافت گل حفاری یا سیال حفاری نیاز دارد، بنابراین رسیدن به ترکیب مناسب گل حفاری و بازیافت مجدد آن، به عنوان یک امر مهم و اساسی در صنعت نفت و محیط زیست به شمار می رود. به طوریکه مشخص نمودن میزان آلودگی فلزات سنگین و مواد آلی موجود در گل حفاری و کنده های حفاری به صورت غیر مستقیم می تواند حائز اهمیت باشد.
مواد و روش ها: در این تحقیق سعی شده است که میزان آلودگی کنده های حفاری، با وجود پارامترهای سازندی در 10 چاه نفتی حفاری شده در اعماق مختلف (66 دسته داده)، به کمک رگرسیون یادگیری حدی شبکه عصبی مصنوعی، تخمین زده شود.
نتایج و بحث: تعداد 60 دسته داده از داده های تهیه شده به منظور تخمین میزان تغییر در غلظت فلزات سنگین، هیدروکربن های آروماتیک چند حلقه ای در فرآیند یادگیری و آزمون دخالت داده شده اند و 6 دسته داده دیگر مربوط به یک چاه که به طور تصادفی انتخاب شده و در فرآیند اعتبارسنجی شبکه عصبی مصنوعی استفاده شده اند. الگوریتم رگرسیون یادگیری حدی برای 10 عنصر سنگین و 10ترکیب آروماتیک آلوده کننده ی کنده و گل حفاری بر روی دو سری داده ی مختلف در یک منطقه ی حفاری در یکی از میادین نفتی جنوب ایران مورد ارزیابی قرار گرفت.
نتیجه گیری: تخمین میزان آلودگی کنده های حفاری وگل حفاری با استفاده از الگوریتم مورد استفاده در تحقیق مناسب بوده و در پروسه های بعدی صیانت از محیط زیست از قبیل فرآیند تثبیت آلودگی ها و بازیافت گل حفاری نقش کارآمدی خوهد داشت.
کلیدواژهها
عنوان مقاله [English]
Assessment of Cutting and Drilling Mud Heavy Metals and Organic Matter Contamination Using Limit Learning Regression Algorithm Technique of Artificial Intelligence in one of the Oil Fields of Southern Iran
نویسندگان [English]
- Saeid Ahadi 1
- َAndisheh Alimoradi 1
- Hamid Sarkheil 2
- Mahyar Kalhor Mohammadi 3
- Mahdi Fathi 1
1 Department of Mining Engineering, Imam Khomeini International University, Qazvin, Iran
2 Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
3 Drilling Waste Management Unit, Pars Drilling Fluids (PDF) Company, Tehran, Iran
چکیده [English]
Introduction: The process of extraction and exploitation of oil and gas resources requires the cycle of production, sending, and recycling of drilling mud or drilling fluid, so achieving the right combination of drilling mud and its recycling is an essential and fundamental matter in the industrial oil and gas and also the environment.
Material and methods: Determining the level of contamination of heavy metals and organic matter in the drilling mud and drilling cuttings can be necessary so that intelligent methods to estimate these contaminants can be indirectly effective. This study tried to estimate the contamination rate of drilling cuttings, despite the formation parameters of 10 oil wells drilled at different depths (66 data sets), using the regression learning limit of an artificial neural network.
Results and discussion: A total of 60 data sets were prepared to estimate the rate of change in the concentration of heavy metals, polycyclic aromatic hydrocarbons in the learning and testing process, and another six sets of data related to a well that was randomly selected and used in the artificial neural network validation process. Limit learning regression algorithm for ten heavy elements and ten aromatic compounds contaminating cutting and drilling mud on two different data sets in a drilling area in one of the oil fields in southern Iran was evaluated.
Conclusion: The results are suitable for estimating the contamination of drilling cuttings and subsequent environmental protection processes. Such processes of contamination and recycling of drilling mud will play an efficient role.
کلیدواژهها [English]
- Heavy Metals
- Polycyclic Aromatic Hydrocarbons
- Drilling Cutting
- Limit Learning Regression