Hanieh Kazemi moayed; Mahdi jalili ghazizadeh khayat; Mostafa Panahi; Zahra Abedi; Hamid reza Ghafarzadeh
Abstract
Introduction: The sludge produced in the oil refinery is very harmful due to the significant volume and complexity of the compounds, and its reasonable disposal is very important for environmental protection and sustainable development. During the effluent treatment process in the oil refinery, contaminated ...
Read More
Introduction: The sludge produced in the oil refinery is very harmful due to the significant volume and complexity of the compounds, and its reasonable disposal is very important for environmental protection and sustainable development. During the effluent treatment process in the oil refinery, contaminated industrial sludge containing toxic substances is produced, which contains polyaromatic hydrocarbon compounds and is classified in the group of hazardous wastes.Material and methods: In this study, the life cycle evaluation of disposal methods in two scenarios of landfill and incineration on industrial sludge of oil refinery in Iran has been investigated. Using life cycle assessment softwareand openLCA with CML-Baseline Impact Assessment Model, different environmental impact categories were examined and using weighting and dimensionless method of each effect class in the two defined scenarios, the best scenario has been identified in terms of the environment.Results and discussion: The results from 11 categories including acidification, climate change, reduction of abiotic resources, related to both fossil fuels and factors affecting final reserves, toxicity drinking water, seawater, and soil, eutrophication, human poisoning, ozone layer depletion, and photochemical oxidation have been evaluated. The results showed that the least environmental effects on indicators of human and plant species health are related to the landfill scenario. The sludge incineration scenario, which is sent directly to the incinerator, has been selected as the worse scenario with the highest emissions of carbon dioxide, methane and nitrogen oxides into the environment.Conclusion: The results of dimension lessness in the two studied scenarios showed that Scenario 1 (Landfill) with a value of 2.94 × 10 -6 and Scenario 2 (waste incineration) with a number of 5.42 × 10 -6 had the most and the least destructive effect on the environment, respectively.
Shideh Atri; Mostafa Panahi; Reza Arjmandi; Alireza Gharagozlou
Abstract
Introduction: Reviewing the Function of many environmental conservation organizations over the past decades, including in Iran, shows that the focus of environmental orientations and policies, due to the lack of accurate and reliable information, is more dependent on the application of instructions and ...
Read More
Introduction: Reviewing the Function of many environmental conservation organizations over the past decades, including in Iran, shows that the focus of environmental orientations and policies, due to the lack of accurate and reliable information, is more dependent on the application of instructions and guidance methods, and less Quantitative management approaches are used. Therefore, this study is aimed at modeling the process of land use changes in the last thirty years (1987-2018) and predicting the future status in case of continuation of the current trend and using improper management patterns. For this purpose, the InVEST software is used to analyze the present situation and to draw future conditions. The results in map form provide a good opportunity for managers and decision-makers to infer trends in future changes and modify management patterns to improve conditions. Material and methods: In this study, satellite images of Landsat 5, 7 and 8 According to years 1987, 2000 and 2018, were used for land use mapping in Jajrood protected area through extraction in ENVI 5.3 remote sensing software and ArcGIS 10.3 software. The accuracy of the classifications has been evaluated. According to the purpose of the study the area of study is divided into 10 user units. These units include poor rangelands, rich rangelands, planted forests, agricultural lands, barren lands, dam, residential areas, rivers, dirt and paved roads and the status and area of each user unit was determined.Finally, the scenario generator model of the InVEST software version 3.6.0., which uses a completely new approach to quantify and map, was applied in mapping the status of the future. Results and discussion: According to the results of the past 30 years, the extent of residential areas, roads and planted forests has increased, and the extent of river distribution has decreased, as a result poor rangelands increased and rich rangelands decreased as well as changes in barren lands was clearly visible. So that, the extent of the barren lands has declined by the year 2000 due to the conversion to man-made use (near residential areas) and poor rangelands (due to favorable weather conditions, including suitable rainfall). The situation in the Barren areas during the period ending in 2018 has increased due to the bad weather (drought) and the irregular grazing of livestock and the conversion of poor rangelands into the Barren areas. The agricultural lands have increased over a period of time due to its proximity to residential areas and then a downward trend has taken place due to increasing land value. In recent years, the Mamlou Dam has also been constructed and operated in the area. In fact, because of Jajrood's proximity to large city of Tehran and the increasing population, the need for ecosystem services in the area has increased, and man-made uses being replaced natural land uses.Future forecasts showed that the extent of planted forests, barren and residential areas would increase; rangelands and agricultural lands would decrease. During the study period, rich rangelands marked as the most reduced area and residential areas marked as the most increased area. Conclusion: The Jajrood Protected Area has undergone significant land use changes over the past 30 years due to human intervention. These changes have been caused by economic and social changes. It has been accompanied by management challenges in adherence to safeguards and efforts to achieve the defined goals for such areas. The changes of natural land use and the replacement of man-made use in the face of unnecessary development have undermined the natural landscape of the Jajrood Protected Area. This study showed that changes in multiple ecosystem services will act as major drivers of human change through changes in land cover / land use.In addition to identifying land use change, identifying suitable areas for natural capital conservation, man-made use development and sustainable land use, spatial development planning can be carried out in a way that reduces future uncertainties. It will result in making informed decisions and foster synergies in both environmental and development sectors.
Farshad Keivan Behjou; Ahmad Hashemian; Mostafa Panahi; Elnaz Hassanzadeh
Volume 14, Issue 1 , April 2016, , Pages 137-146
Abstract
This research was done with the aim of valuation of main soil nutrients and emphasize on forest soil in Shimbar conservative forest in Khozestan province. At first, EPM method was applied for determining erosion and then the amount of soil waste of 3 main nutrients including nitrogene, phosphorus, and ...
Read More
This research was done with the aim of valuation of main soil nutrients and emphasize on forest soil in Shimbar conservative forest in Khozestan province. At first, EPM method was applied for determining erosion and then the amount of soil waste of 3 main nutrients including nitrogene, phosphorus, and potassium based on differences of soil nutrients of control and eroded area, then valuation of forest soil nutrients based on replacement method was assessed. The results of present research showed that in study area including 3116ha, 468.5 ton of NPK eroded caused by erosion, that means 88202945491 Rials to environment. On the other hand, the results indicated that the studied forest can prevent eroding NPK equal to 28306465 Rial, that means the high value of canopy cover and forest.