Farhad Misaghi; Zeinab Bigdeli; Mostafa Razzaghmanesh
Abstract
Introduction: Urbanization is increasing in the world and the world's urban population is becoming denser in cities. One of the effects of urbanization is the increase in the percentage of impervious surfaces in these areas. Today, many important cities in the world pay attention to the concept of sustainable ...
Read More
Introduction: Urbanization is increasing in the world and the world's urban population is becoming denser in cities. One of the effects of urbanization is the increase in the percentage of impervious surfaces in these areas. Today, many important cities in the world pay attention to the concept of sustainable development in order to reduce the effects of their city development on the quality and quantity of runoff and use modern green management technologies, including the best management methods and development methods with minimal side effects. A green roof is a multi-layered system that covers the roof and balcony of a building with vegetation and by absorbing and keeping part of the rain, and by influencing the processes of evaporation and transpiration, purification, the volume and intensity of the peak flow of runoff, the dimensions The drainage system reduces the downstream and improves the quality of air and water, preserves the beauty of the city and prevents the wastage of building energy.Material and methods: This research was conducted as a field experiment in the Faculty of Agriculture of Zanjan University. The test period was from April to August of 2017. In this research, the effect of the use of super absorbent (zeolite) on the amount of water absorption and retention, the maximum and minimum volume of runoff, the volume of runoff, sediment and the start time of the runoff resulting from rainfall in the rain intensity of 35, 45, 55, 65 and 75 mm/h has been investigated on a green roof with a slope of 5%, in a cold dry climate.Results and discussion: Based on this, with the increase in the intensity of rainfall, the volume of runoff also increases, and the volume of runoff in barren soil is more than the rest of the treatments, and its downward trend is soil containing 1% zeolite, soil containing 3% zeolite, and cultivated soil. Be Also, the volume of runoff increased with the increase in rainfall intensity and the highest value of runoff volume belongs to barren soil. The sediment measured in the runoff also increases with the increase in the intensity of precipitation in the treatments, except for the grass treatment.Conclusion: Barren soil has a very high volume of runoff due to the sealing of its surface layers and clogging of pores. Adding zeolite to the soil significantly reduced the volume of runoff and retained more water than barren soil. The rate of erosion in soil with 1% zeolite was high and the rate of erosion was the lowest in grass. In barren soil, because the penetration of water is low, after a short period of time after the rain, the water flows as runoff, but zeolite has the property and characteristic that when added to the soil, the time for the start of runoff is lengthened by 3%.
Farhad Misaghi; Amir Hossein Amani; Ali Reza Seddigh
Abstract
Introduction: Water scarcity is one of the most important issues in the 21st century that human societies encounter. Population growth, industrial and agricultural production, rapid urbanization, and severe climate change have had a major impact on limited water resources and the environment in river ...
Read More
Introduction: Water scarcity is one of the most important issues in the 21st century that human societies encounter. Population growth, industrial and agricultural production, rapid urbanization, and severe climate change have had a major impact on limited water resources and the environment in river basins. The optimal allocation of water resources among consumers requires effective measurements of water resources and its integrated management for human and environmental justice. Optimization of water resource allocation is a very complex decision to make in several levels, stages, subjects, objectives, and non-linear communications. With the complexity of water allocation issues, its algorithms have been gradually improved, and the use of intelligent meta-analysis algorithms in optimizing the allocation of water resources from traditional math planning has surpassed. However, the effectiveness of conventional optimization algorithms is not ideal from a variety of perspectives, and issues such as convergence, computational speed, initial sensitivity, etc., due to the complexity and multi-purpose of optimizing water allocation, require further studies to improve the efficiency of the algorithm and obtaining a desirable overall solution. Material and methods: The gray wolf algorithm mimics the hierarchy of leadership and the mechanism of hunting gray wolves in nature. In this algorithm, four types of gray wolves, including alpha, beta, delta, and omega have been used to simulate a hierarchy of leadership. Also, the colonial competition algorithm begins with some primary random populations, each of which is called a "country". Some of the best population elements (equivalent to the elites in the genetic algorithm) are chosen as imperialists. The remaining population is considered as a colony. Colonialists, depending on their power, are pulling these colonies into a particular process. In this research, the gray wolf and colonial competition algorithms were used to optimize water resources values during 2000-2012 regarding the Sofi-Chay irrigation and drainage network and Alavian dam to achieve the optimal policy. The Alavian dam in the province of East Azerbaijan, 3km north of Maragheh city, near the village of Alavian, has been constructed on the Sofi-Chai River, and supplies drinking water to the Maragheh, Miandoab, Bonab, Ajbashir, and Malekan counties. Results and discussion: The results of the implementation of the gray wolf algorithm, compared to the colonial competition algorithm, were very close to the measured value of the amount of allocated water and this suggests the coherence and efficiency of the gray wolf algorithm in water resources system. According to the RMSE values in all four areas, the gray wolf algorithm was 44% less than the colonial competition algorithm and 64% higher in the Nash-Sutcliff coefficient. Conclusion: The results of this study showed that the gray wolf algorithm has a suitable speed for finding the optimal response. In other words, it has a high convergence rate and can find an optimal global optimization problem. The results showed that the gray wolf algorithm yielded better and more acceptable results in water utilization in combination with utilizing surface water and underground water resources.