برآورد دمای سطح زمین کاربری‌ اراضی و پوشش زمین شهرستان دنا با استفاده از الگوریتم پنجره مجزا و داده‌های ماهواره لندست 8

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر ، ایران

2 گروه اقتصاد منابع و محیط زیست، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

3 پژوهشکده منابع طبیعی و زیست محیطی، دانشگاه یاسوج، یاسوج، ایران

چکیده

سابقه و هدف:
دمای سطح زمین (LST) به‌عنوان متغیر مهم ریز‌اقلیم و تشعشع انتقالی داخل جو، یکی از معیارهای مهم در برنامه‌ریزی ناحیه‌ای و منطقه‌ای است از اینرو عامل مهمی در کنترل فرایندهای زیستی، شیمیایی و فیزیکی زمین است. فعالیت‌های طبیعی و انسان‌ساز به‌ویژه نوع کاربری اراضی و پوشش زمین با تغییر شرایط فیزیکی و زیستی یک منطقه پارامتر مهمی در مقدار دمای سطح زمین است.
مواد و روش‌ها:
در این پژوهش رابطه بین دمای سطح زمین و پوشش زمین مرتبط با الگوهای کاربری‌های اراضی و پوشش زمین شهرستان دنا در سال 2016 با استفاده از الگوریتم پنجره مجزا روی مجموعه داده‌های ماهواره لندست 8 بررسی شده است. الگوریتم پنجره مجزا یک ابزار ریاضی است که با استفاده از اطلاعات زمینی، دمای روشنایی سنجنده حرارتی (TIRS)، قابلیت گسیلندگی زمین (LSE) و عامل پوشش گیاهی سبز جزء به جزء (FVC) به‌دست‌آمده از باند چند طیفی سنجنده OLI و دمای سطح زمین را برآورد می‌کند.
نتایج و بحث:
بر اساس طبقه‌بندی تصویر سنجنده OLI ماهواره لندست 8 سال 2016 با درستی کل حدود 80 درصد و ضریب کاپای 90/0، کاربری مرتع و مناطق مسکونی با 67/50 و 3/0 درصد، به ترتیب بیشترین و کمترین مساحت را در شهرستان دنا به خود اختصاص داده‌اند. میانگین دمای سطح زمین در شهرستان دنا حدوداً 32 درجه سانتی‌گراد و میانگین شاخص پوشش گیاهی نیز حدوداً 14/0 است. در تجزیه‌و‌تحلیل رابطه بین LST و شاخص پوشش گیاهی (NDVI) در کل شهرستان دنا و در هر طبقه کاربری اراضی و پوشش زمین، نتایج روند متفاوتی را نشان داد به‌طوری‌که رابطه مثبت و معنی‌داری بین NDVI و LST در کل شهرستان دنا و کاربری مرتع وجود دارد. در صورتی‌که در سایر کاربری‌های جنگل، زراعت و باغ و مناطق مسکونی رابطه معنی‌داری یافت نشد.
نتیجه‌گیری:
عوامل مختلفی بر نوع و شکل رابطه بین NDVI و LST اثرگذار است که از جمله می‌توان به نوع کاربری اراضی و پوشش زمین، مقدار پوشش گیاهی، فصل سال، زمان روز، نوع اکوسیستم، عرض جغرافیایی و عوامل محدوده‌کننده و محرک رشد پوشش گیاهی مثل مقدار آب و انرژی خورشیدی اشاره کرد. عامل تعیین‌کننده مقدار دما در شهرستان دنا افزایش یا کاهش پوشش گیاهی نیست بلکه تغییرات ارتفاع از سطح دریا است. به عبارتی دیگر اثر تغییرات ارتفاع از سطح دریا بر دمای سطح زمین از اثر پوشش گیاهی بر دما مهم‌تر است. در ارتفاعات پایین‌تر شهرستان دنا که دمای نسبتاً زیاد برای رشد پوشش گیاهی کافی وجود داشته است، پوشش گیاهی متراکم‌تر و فراوان‌تر بوده است و به همین دلیل رابطه مثبتی بین دمای سطح زمین (LST) و  شاخص پوشش گیاهی (NDVI) وجود دارد. بنابراین تأثیر‌گذاری پوشش گیاهی در کاهش دمای سطح زمین  بستگی به مقدار  پوشش گیاهی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating land surface temperature of land use and land cover in Dena county using single window algorithm and landsat 8 satellite data

نویسندگان [English]

  • Vajihe Ghorbannia 1
  • Mehrdad Mirsanjari 1
  • Homan Liaghati 2
  • Mohsen Armin 3
1 Department of Environmental Science, Faculty of Natural Resources and Environmental Science, Malayer University, Malayer, Iran
2 Department of Resource Economic and Environment, Research Institute of Environmental Sciences, Shahidbeheshti University, Tehran, Iran
3 Natural Resources and Environmental Research Institute, Yasouj University, Yasouj, Iran
چکیده [English]

Introduction:
Land Surface Temperature (LST), a significant variable of micro climate and radiation transfer within the atmosphere, is one of the most important criteria in zonal and regional planning because it is a major factor in controlling the Earth’s biological, chemical and physical processes. Natural and man-made activities, especially land use and land cover, by changing the physical and biological conditions of a region are an important parameter in the amount of land surface temperature.
Material and methods:
In this study, the relationship between land surface temperature and vegetation cover associated with land use and the land cover patterns of Dena County in 2016 were investigated using a Single Window algorithm and Landsat-8 data. The split-window algorithm is a dynamic mathematical tool which estimates land surface temperature (LST) using ground information, brightness temperature of thermal bands of the TIRS sensor, the land surface emissivity (LSE) factor and fractional vegetation cover (FVC) obtained from a multiband OLI sensor.
Results and discussion:
Based on classification of images of the Landsat-8OLI sensor in 2016 with an accuracy of about 80% and the kappa coefficient 0.90, rangeland and residential areas with 50.67 and 0.3 percent, respectively, were allocated the highest and the lowest areas of Dena county. The mean of land surface temperature in Dena County is about 32 ° C and the mean of the land cover index is about 0.14. In analyzing the relationship between LST and the vegetation index (NDVI) in Dena County and in each category of land use and land cover, results showed a different trend so that there is a positive and significant relationship between NDVI and LST in the whole of Dena County and rangeland in the event that there is no significant relationship in other land uses such as forest, farm and garden and residential area.
Conclusion:
Various factors affect the type and shape of the relationship between NDVI and LST such as land use and land cover, vegetation cover, season, time of day, type of ecosystem, latitude and factors in triggering the growth of vegetation such as water and solar energy. The main cause of the ineffectiveness of vegetation cover in reducing the land surface temperature of Dena County is the lack of a sufficient amount of vegetation cover. However, the determining factor of temperature in Dena County is not increases or decreases in vegetative cover but is rather a change in the height above sea level. In other words, the effect of altitude on temperature is more important than the effects of vegetation on the Earth's surface temperature. At the lower altitude of Dena County where the temperature is relatively high and there is enough vegetation to grow, the vegetation cover is denser and more abundant and therefore there is a positive relationship between land surface temperature (LST) and vegetation cover index (NDVI).

کلیدواژه‌ها [English]

  • Land surface temperature
  • Single window algorithm
  • Land use
  • Vegetation cover
  • Landsat-8
  • Dena County
  1. Alavipanah, S.K., Saradjian, M., Savaghebi, Gh.R,. Komaki, Ch.B., Moghimi, E. and Karimpour Reyhan, M., 2007. Land surface temperature in the Yardang region of Lut Desert (Iran) based on field measurements and landsat thermal data. Journal of Agricultural Science and Technology. 9, 287-303.
  2. Artis, D.A., and Carnahan, W.H., 1982. Survey of emissivity variability in thermography of urban area. Remote Sensing of Environment. 12, 313-329.
  3. Babaei Fini, A., 2015. The Relationship between land surface temperature and normalized vegetation index in the urban environment (Case study: Isfahan metropolis). Journal of Natural Geography. 8(9), 75-90.
  4. Boegh, E., Soegaard, H., Hanan, N., Kabat, P., and Lesch, L., 1998. A remote sensing study of the NDVI–Ts relationship and the transpiration from sparse vegetation in the Sahel based on high resolution satellite data. Remote Sensing of Environment. 69, 224- 240.
  5. Carlson, T.N., Gillies, R.R. and Perry, E.M., 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer soil water content and fractional vegetation cover. Remote Sensing Reviews. 52, 45–59.
  6. Chen, L., Mengyun, Li., Huang, F., and Xu, Sh., 2013. Relationships of LST to NDBI and NDVI in Wuhan city based on Landsat ETM+ image. In Proceedings 6th International Congress on Image and Signal Processing (CISP), 16th-18th December, China.
  7. Daneshkar arasteh, P., Tajrishi, M., and Saghafian, B., 2011. Determination of the land surface temperature using remote sensing technology in the Sistan region. Journal of Engineering and Watershed Management. 3(2), 67-77.
  8. Fyzi zadeh , B., Didehban, KH., and Gholam nia, KH., 2015. Estimation of land surface temperature using Landsat 8 satellite images and single window algorithm, Case study: Mehabad basin. Journal of Geographic Information. 25(98), 171-181.
  9. Jalili, SH., Morid, S., and Ziaeian firoozabadi, P., 2008. Performance comparison of satellite and meteorological indices in drought monitoring. Soil and Water Research of Iran. 1, 139-149.
  10. John, R.J., 2009. Remote Sensing of the Environment An Earth Resource Perspective. Second Edition, Dorling Kindersley, Delhi.
  11. Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., Panov, N., and Goldberg, A., 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate. 23, 3.
  12. Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Agam, N., Khudulmur, S., and Tucker, C.J., 2006. Comments on the use of the vegetation health index over Mongolia. International Journal of Remote Sensing. 27, 2017–2024.
  13. Lo, C.P., Quattrochi, D.A., and Luvall, J.C., 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing. 18, 287–303.
  14. Price, J.C., 1990. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transmission Geosciences Remote Sensing. 28, 940–948.
  15. Rajeshwari, A., and Mani, N.D., 2014. Estimation of Land Surface Temperature of Dindigul District usingLandsat 8 Data”, IJRET: International Journal of Research in Engineering and Technology. 03, 05.
  16. Shahid Latif, M.D., 2014. Land surface temperature retrieval of landsat-8 data using split window algorithm- A case study of Ranchi District. International Journal of Engineering Development and Research. 2(4), 2321-9939.
  17. Sobrino, J.A., and Raissouni, N., 2000. Toward remote sensing methods of land cover dynamic monitoring, Application to Morocco. International Journal of Remote Sensing. 21, 353–366.
  18. Sobrino. A., Juan. C., and Paolinib. L., 2004. Land surface temperature retrieval form landsat TM 5. Remote Sensing of Environment. 90, 434-440.
  19. Sun, D., and Kafatos, M., 2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett., 34, L24406. doi:10.1029/2007GL031485.
  20. Suresh, S., Ajay Suresh, V., and Mani, K., 2015. Analysis of land surface temperature variation using thermal remote sensing spectral data of landsat satellite in Devikulam Taluk Kerala-India. International Journal of Research in Engineering and Applied Sciences. 5 (5), 145-154.
  21. Suresh, S., Ajay Suresh, V., and Mani, K., 2016. Estimation of land surface temperature of high range mountain landscape of Devikulan Taluk using landsal 8 data. International Journal of Research in Engineering and Technology. 5(1), 2321-7308.
  22. Weng, Q., Lu, D., and Schubring, J., 2004. Estimation of land surface temperature vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment. 89, 467–483.
  23. Wilson, J.S., Clay, M., Martin, E., Stuckey, D., and Risch, K.V., 2003. Evaluating environmental influence of zoning in urban ecosystems with remote sensing. Remote Sensing of Environment.. 86, 303–321.
  24. Yue, W., Xu, J., Tan, W., and Xu, L., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing. 28(15), 3205–3226.
  25. Zhi-qiang, L.V., and Qi-gang, Zh., 2011. Utility of landsat image in the study of land cover and land Surface Temperature Change, Sciverse ScienceDirect-Procedia Environmental Sciences. 1287-1292.