بررسی جذب نیکل از فاضلاب آبکاری توسط نانوگرافیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران

2 گروه مهندسی محیط زیست ،دانشکده محیط زیست ، دانشگاه تهران، تهران ، ایران

چکیده

سابقه و هدف:  فاضلاب صنعت آبکاری حاوی انواع گوناگونی از فلزات سنگین در غلظت های بالا می باشد. یکی از این فلزات سمی، نیکل می باشد که تخلیه آن به محیط آبی و خاکی از معضلات محیط زیستی محسوب می شود. از این رو حذف این فلز از فاضلاب ها برای حفظ محیط زیست و سلامت انسان امری ضروری و مهم است. در سال های اخیر ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﻨﺎﻭﺭﻱ ﻧﺎﻧﻮ ﺩﺭ ﺣﺬﻑ ﺁﻻﻳﻨﺪﻩ ﻫﺎﻱ ﺯﻳﺴﺖ ﻣﺤﻴﻄﻲ ﺍﺯ ﺟﻤﻠﻪ ﺭﻭﺷ ﻬﺎﻳﻲ ﺍﺳﺖ ﻛﻪ ﺗﻮﺟﻪ ﺯﻳﺎﺩﻱ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺟﻠﺐ ﻛـﺮﺩﻩ  ﺍﺳﺖ. در تحقیق حاضر، از نانوگرافیت به عنوان جاذب موثر جهت حذف یون نیکل استفاده شد.
مواد و روش ­ها: به جهت بررسی فرآیند جذب، نانوگرافیت با درصد خلوص %9/99 و سطح ویژه m2/g24-18 و مورفولوژی صفحه ای از شرکت پیشگامان نانو مواد ایرانیان تهیه و به عنوان جاذب استفاده گردید. همچنین فاضلاب به کار رفته در آزمایش ها از یکی از کارگاه های آبکاری شهر تهران تهیه شد که حاوی mg/L765 نیکل و pH حدود 1 بود. پارامترهای pH، زمان و مقدار جاذب مورد ارزیابی قرار گرفتند. در هر آزمایش یکی از پارامترها متغیر و دو پارامتر دیگر ثابت در نظر گرفته شد. قبل و پس از هر آزمایش مقدار نیکل تعیین گردید.   
نتایج و بحث: در این مطالعه پارامترهای pH، زمان جذب و مقدار جاذب از عوامل موثر بر فرآیند جذب نیکل بوده که مورد بررسی واقع شدند. ﺑﻪ ﻣﻨﻈﻮر تحلیل ﻣﻜﺎﻧﻴﺰم ﺟﺬب، ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ ﺑﺎ اﻳﺰوﺗﺮم ﻫﺎی ﻻﻧﮕﻤﻮﻳﺮ و ﻓﺮوﻧﺪﻟﻴﭻ ﺑﺮازش شدند. همچنین برای بررسی سینتیک جذب، مدل های شبه درجه اول و شبه درجه دوم مورد مطالعه قرار گرفتند. بر طبق نتایج، با افزایش pH از 5 تا ۷ میزان جذب نیکل توسط نانو گرافیت افزایش چشمگیری داشت. لذا pH  برابر ۷ به عنوان pH بهینه برای حذف نیکل تعیین گردید. بررسی ها همچنین نشان داد، افزایش زمان تا ۸۰ دقیقه اول تاثیر نسبتا خوبی در میزان جذب نیکل توسط نانو ذره مذکور داشت و بعد از آن تقریبا عمل جذب به تعادل رسید. در نهایت مشاهده شد که در یک زمان ثابت، افزایش مقدار جاذب منجر به افزایش جذب شد و برای دستیابی به حداکثر جذب نیکل، مقدار 2 گرم برای جاذب انتخاب شد. بر اساس نتایج به دست آمده، نیکل اولیه به میزان %52/97 توسط نانو گرافیت جذب گردید. نتایج همچنین نشان داد که داده ها از ایزوترم فروندلیچ پیروی بیشتری داشتند. پس از تعیین میزان جذب نیکل در زمان های مختلف، داده های حاصل توسط مدل سینتیکی بررسی شدند. مطالعات سینتیکی همچنین نشان داد که داده های جذب تابع مدل شبه کاذب درجه دوم بودند.
نتیجه ­گیری: بررسی نتایج نشان داد که pH نقش مهمی در فرآیند جذب دارد و با افزایش زمان تا رسیدن به زمان تعادل میزان جذب افزایش می یابد. یکی از عوامل موثر مقدار جاذب است که تاثیر مستقیم بر جذب دارد. تبعیت از ایزوترم فروندلیچ در این تحقیق بیانگر این است که مکان های جذب در جاذب دارای انرژی متفاوتی می باشند. همچنین مدل شبه کاذب درجه دوم در سینتیک جذب بر فرآیند جذب شیمیایی علاوه بر جذب فیزیکی اشاره دارد.  

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of nickel adsorption from plating wastewater by nanographite

نویسندگان [English]

  • Toktam Shahriari 1
  • Abdolreza Karbassi 2
  • Maryam Shirazinejad 1
1 Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran
2 Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran
چکیده [English]

Introduction: Industrial plating wastewater contains various types of detrimental heavy metals in high concentrations. One of this toxic metal is Nickel that its discharge into the surface waters and soil is considered as an environmental problem. Hence removing of this metal from wastewaters is crucial and vital for protecting the environment and human health. Applying of nanotechnology in elimination of environmental contaminants is one of the methods which attracted a great deal of attention in recent years. In present research, nanographite was utilized as efficient adsorbent in order to remove Ni ions.
Material and methods: In order to investigate the adsorption process, nanographite with a purity of 99.9% and a specific surface area of ​​18-24 m2/g and a plate morphology was prepared from Pishgaman Iranian Nanomaterials Company and used as an adsorbent. Also, the wastewater used in the experiments was prepared from one of the plating workshops in Tehran, which contained 765 mg/L of nickel and a pH of about 1. The parameters of pH, time and amount of adsorbent were evaluated. In each experiment, one of the parameters was considered variable and the other two parameters were considered constant. The amount of nickel was determined before and after each test.Results and discussion: In this study, the parameters including pH, adsorption time and adsorbent dosage were investigated as effective factors on Ni adsorption process. In order to analyze the adsorption mechanism, the obtained results were examined by the Langmuir and Fruendlich isotherm models. In addition, pseudo-first-order and pseudo-second-order models were studied to investigate adsorption kinetics. According to the results, the Ni uptake by nanographite was enhanced significantly with increasing of the pH value from 5 to 7. Thus the pH of 7 was determined as optimum pH for Ni removal. Investigations also showed that increasing the time up to the first 80 minutes had a relatively good effect on nickel adsorption by the nanoparticle, and after that the adsorption almost reached equilibrium. Finally, it was observed that in a constant time, increasing the amount of adsorbent led to an increase in adsorption, and to achieve the maximum adsorption of nickel, the amount of 2g was chosen for the adsorbent. Based on the obtained results, 97.52% primary nickel was adsorbed by nanographite. Results also revealed that the data were best fitted to the Fruendlich models. After determining the amount of nickel adsorption at different times, the resulting data were analyzed by the kinetic model.Kinetic studies also indicated that the adsorption data were described well by pseudo-second-order model. Conclusion: Examining the results showed that pH plays an important role in the adsorption process and the adsorption rate increases with increasing time until the equilibrium time is reached. One of the effective factors is the amount of adsorbent, which has a direct effect on adsorption. Following the Freundlich isotherm in this research indicates that the adsorption sites in the adsorbent have different energies. Also, the pseudo-second-order model in adsorption kinetics refers to the process of chemical adsorption in addition to physical adsorption.

کلیدواژه‌ها [English]

  • Adsorbent
  • Heavy metal
  • Isotherm
  • Kinetics
  • Nano graphite
Adolph, M.A., Xavier, Y.M., Kriveshini, P. and Rui, K., 2012. Phosphine functionalised multiwalled carbon nanotubes: A new adsorbent for the removal of nickel from aqueous solution. Journal of Environmental Sciences. 24(6), 1133-1141.
Ahaliabadeh, Z. and Irannajad, M., 2017. Removal of Ni and Cd ions from aqueous solution using iron dust-zeolite composite: Analysis by thermodynamic, kinetic and isotherm studies. Chemical Research in Chinese Universities. 33, 318-326.
Angelis, G.D., Medeghini, L., Conte, A.M. and Mignardi, S., 2017. Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production. 164, 1497-1506.
Baird, R.B., Eaton, A.D. and Rice, E.W., 2017. Standard methods for the examination of water and wastewater, 23rd Edition. American public health association, American water works association, Water environment federation, Washington, D.C., USA.
Can, M.Y., Kaya, Y. and Algur, O.F., 2006. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technology. 97(14), 1761-1765.
Dehghani, M.H., Sarmadi, M., Alipour, M.R., Sanaei, D., Abdolmaleki, H., Agarwal, S. and Gupta, V.K., 2019. Investigating the equilibrium and adsorption kinetics for the removal of Ni(II) ions from aqueous solutions using adsorbents prepared from the modified waste newspapers: A low-cost and available adsorbent. Microchemical Journal. 146, 1043–1053.
Demirbas, E., Kobya, M., Oncel, S. and Sencan, S., 2002. Removal of Ni (II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology. 84(3), 291-293.   
Es sahbany, H., Berradi, M.,  Nkhili, S.,  Hsissou, R., Allaoui, M., Loutfi, M., Bassir, D., Belfaquir, M. and El Youbi, M.S., 2019. Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. Materials Today: Proceedings. 13(3), 866–875.
Fakhraei, F., 2009. Quantitative and qualitative investigation of the effluents of electroplating workshops in Abbas Abad industrial towns and the eastern region of Tehran and providing appropriate solutions to remove chromium pollutants. MS.c. Thesis. University of Tehran, Tehran, Iran.
Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q. and Wang, Y., 2013. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni (II) adsorption. Chemical Engineering Journal. 217, 345-353.
Gautam, R.K., Gautam, P.K., Banerjee, S., Soni, S., Singh, S.K. and Chattopadhyaya, M.C., 2015. Removal of Ni (II) by magnetic nanoparticles. Journal of Molecular Liquids. 204, 60-69.
Hasar, H., 2003. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials. 97(1-3), 49-57.
He, J., Cai, X., Chen, K., Li, Y., Zhang, K., Jin, Z., Meng, F., Liu, N., Wang, X., Kong, L., Huang, X. and Liu, J.,  2016. Performance of a novelly-defined zirconium metal-organic frameworks adsorption membrane in fluoride removal. Journal of Colloid and Interface Science. 484, 162-172.
Kamble, G.S., Joshi, S.S., Kokare, A.N., Zanje, S.B., Kolekar, S.S., Ghule, A.V., Gaikwad, S.H. and Anuse, M.A., 2017. A sensing behavior synergistic liquid–liquid extraction and spectrophotometric determination of nickel(II) by using 1-(2ˊ,4ˊ-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of foundry and electroless nickel plating wastewater. Separation Science and Technology. 52(14), 2238-2251.
Kwon, T.N. and Jeon, C., 2013. Adsorption characteristics of sericite for nickel ions from industrial waste water. Journal of Industrial and Engineering Chemistry. 19(1), 68-72.
Lee, C.G., Lee, S., Park, J.A., Park, C., Lee, S.J., Kim, S.B., An, B., Yun, S.T., Lee, S.H. and Choi, J.W., 2017. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere. 166, 203-211.
Li, W., Lin, X., Yu, M., Mubeen, I., Buekens, A. and Li, X., (2016). Experimental study on PCDD/Fs adsorption onto nano-graphite. Aerosol and Air Quality Research. 16, 3281-3289.
Maddodi, S.A., Alalwan, H.A., Alminshid. A.H. and Abbas. M.N., 2020. Isotherm and computational fluid dynamics analysis of nickel ion adsorption from aqueous solution using activated carbon. South African Journal of Chemical Engineering. 32, 5–12.                                                                                   
Ojedokun, A.T. and Bello, O.S., 2016. Sequestering heavy metals from wastewater using cow dung. Water Resources and Industry. 13, 7-13.
Periasamy, K. and Namasivayam, C., 1995. Removal of nickel (II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: peanut hulls. Waste Management. 15(1), 63-68.
Potgieter, J.H., Potgieter-Vermaak, S.S. and Kalibantonga, P.D., 2006. Heavy metals removal from solution by palygorskite clay. Minerals Engineering. 19(5), 463-470.
Qin, L., Ge, Y., Deng, B. and Li, Z., 2017. Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water. Journal of the Taiwan Institute of Chemical Engineers. 71, 84-90.
Shahriari, T., 2013. Application of electrocoagulation method along with Fe3Omagnetic nanoparticle in tanning wastewater treatment. Ph.D. Thesis. University of Tehran, Tehran, Iran.
Uppal, H., Hemlata, Tawale, J. and Singh, N., 2016. Zinc peroxide functionalized synthetic graphite: An economical and efficient adsorbent for adsorption of arsenic (III) and (V). Journal of Environmental Chemical Engineering. 4(3), 2964-2975.
Zamani, S., Salahi, E. and Mobasherpour, I., 2013. Removal of nickel from aqueous solution by nano hydroxyapatite originated from Persian Gulf corals. Canadian Chemical Transactions. 1(3), 173-190.