Abdoli Laktasarai, M. and Haghigi Khammami, M., 2021. Comparison of classification methods of support vector machine and artificial neural network in the preparation of land use map (case study: Bojag National Park). Environmental Research and Technology. 8(8), 47.
20.1001.1.26763060.1399.5.8.7.7
Abdoli, M. and Panahandeh, M., 2020. Investigating the trends of Anzali wetland connected domain coverage using remote sensing techniques and DPSIR conceptual framework. Environmental Sciences. 18(4), 125-140. doi: 10.52547/envs.18.4.125.
Adeli, S., Salehi, B., Mahidanpari, M., Quackenbush, L.J. and Chapman, B., 2022. Moving Toward L-band NASA-ISRO sAR mission (NISAR) dense time series: multipolarization object-based classification of wetlands using two machine learning algorithms.
Earth and Space Science. 8(1), 1-18.
https://doi.org/10.1029/2021EA001742
Al-Doski, J., Mansor, S.B., Ng, H., San, P. and Khuzaimah, Z., 2020. Land cover mapping using remote sensing data. American Journal of Geographic Information System. 9(1), 33-45. doi: 10.5923/j.ajgis.20200901.04.
Alibakhshi, Z., Alikhah Asl, M. and Rezavani, M., 2015. Preparing mighan wetland Land-use mapping in 2013: Using supervised and fuzzy classification methods. Human and Environment. 13(1), 11-21.
Atarchi, S., Gheysari, M., Hamzeh, S., and Alavi Panah, S. K., 2021. Land Cover Classification of Anzali Wetland Using Fusion of Sentinel 1 and ALOS/PALSAR 2 I.mages. Iranian journal of Ecohydrology. 8(3), 611-622. doi: 10.22059/ije.2021.320301.1478.
Berberoglu, S., Curran, P.J., Lloyd, C.D. and Atkinson, P.M., 2007. Texture classification of Mediterranean land cover. International Journal of Applied Earth Observation and Geoinformation. 9(3), 322-334.
https://doi.org/10.1016/j.jag.2006.11.004.
Bishop, C., 2006. Pattern recognition and machine learning. Springer google schola, 2, 35-42.
Blaschke, T., Lang, S., and Hay, G. (Eds.)., 2008. Object-based image analysis: spatial concepts for knowledge-driven remote sensing applications. Springer Science & Business Media, 817. DOI:
10.1007/978-3-540-77058-9.
Bonyad, A.A., and Hajighaderi, T., 2007. Producing Natural Forest Maps of the Zanjan by Usi ng ETM+ Data of Landsat 7 Satellite (In Persian), Science and Technology of Agriculture and Natural Resource, Water and Soil Science. 11(42), 627-638.
20.1001.1.22518517.1386.11.42.51.0.
Dargahian, F., and Mosivand, Y., 2022. Investigating the natural and human factors affecting the changes in the land use classes of Shadgan Wetland. Ecohydrology. 9 (1), 111-126. doi: 10.22059/ije.2022.332440.1567.
Dong, D., Wang, C., Yan, J., He, Q., Zeng, J., and Wei, Z., 2020. Combing Sentinel-1 and Sentinel-2 image time series for invasive Spartina alterniflora mapping on Google Earth Engine: A case study in Zhangjiang Estuary. Journal of Applied Remote Sensing. 14(4) 044504-044504. DOI:
10.1117/1.JRS.14.044504.
Ehsani, A. H., and Shakeryari, M., 2018. Determining the optimal method for classification and mapping of land use/land cover through comparison of artificial neural network and support vector machine algorithms using satellite data (Case study: International Hamoun wetland). Journal of Environmental Science and Technology. 20(4), 193-208. doi: 10.22034/jest.2019.13711
Fatemi, S. B., and Rezaei., Y., 2022. Principles of Remote Sensing. Azade Press. 350.
Felegari, S. Sharifi, A. Moravej, K., Amin, M., Golchin, A., Muzirafuti, A., and Zhao, N. 2021. Integration of sentinel 1 and sentinel 2 satellite images for crop mapping. Applied Sciences. 11(21), 10104.
https://doi.org/10.3390/app112110104.
Ghahraman, A., and Atar, F., 2011. Anzali Wetland in Danger of Death (An Ecologic- Floristic Research). Journal of Environmental Studies. 28(17), 1-38. DOI:
10.22059/IJE.2021.320301.1478.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment. 202, 18-27.
https://doi.org/10.1016/j.rse.2017.06.031.
Hu, T., Liu. J., Zheng, G., Zhang, D., and Huang, K. 2020. Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degradation & Development. 31(1), 65-80.
https://doi.org/10.1002/ldr.3429.
Huang, C., Wylie, B., Yang, L., Homer, C., and Zylstra, G., 2002. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International journal of remote sensing. 23(8), 1741-1748.
https://doi.org/10.1080/01431160110106113.
Imani, J., Ebrahimi, A., Gholonejad, B., and Tahmasebi, P., 2018. Comparison of NDVI and SAVI in three plant communities with different sampling intensity (Case Study: Choghakhour Lake Rangelands in Charmahal & Bakhtiri). Iranian Journal of Range and Desert Research, 25(1), 152-169. doi: 10.22092/ijrdr.2018.116233.
Ju, Y., and Bohrer, G., 2022. Classification of wetland vegetation based on NDVI time series from the HLS dataset. Remote Sensing. 14(9), 2107.
https://doi.org/10.3390/rs14092107.
Lu, Dengsheng., Mausel P., Brondizio., E and Moran, E., 2004. Change detection techniques, International journal of remote sensing. 25(12), 2365-2401. DOI:
10.1080/0143116031000139863.
Melendez-Pastor. I., Navarro-Pedreno. J., Gómez, I., and Koch, M., 2010. Detecting drought induced environmental changes in a Mediterranean wetland by remote sensing. Applied Geography. 30(2), 254-262.
https://doi.org/10.1016/j.apgeog.2009.05.006.
Mohammadi, A., Sarab, A., Jafari, M., and Jafari, A., 2010. Investigating the amount of chlorophyll changes in forest land based on NDVI index, case study: central areas of Gilan province. Application of Remote Sensing and Geographic Information System in Planning. 1(2), 7-15.
Mondal, A., Kundu, S., Chandniha, S. K., Shukla, R., and Mishra, P. K., 2012. Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. International Journal of Remote Sensing and GIS. 1(2), 116-123. https://www.researchgate.net/publication/280316746_Comparison_of_support_vector_machine_and_maximum_likelihood_classification_technique_using_satellite_imagery.
Pamungkas, S., 2023. Analysis of Vegetation Index for Ndvi Evi-2 And Savi for Mangrove Forest Density Using Google Earth Engine in Lembar Bay Lombok Island. In IOP Conference Series: Earth and Environmental Science. 1127(1), 012034, IOP Publishing. DOI: 10.1088/1755-1315/1127/1/012034.
Rasti, S., Mahdavi Fard, M., Sheikh Qadri, H., Nasiri, A., and Tektaz, N. Z., 2022. Improving classification accuracy by combining multi-seasonal images of Sentinel 1 and 2 in order to prepare a land use map in the cloud space of Google Earth Engine (case study: Gilan province). Geography and Human Relations. 5 (3), 357-373. doi: 10.22034/gahr.2022.336692.1696
Ruiz L. F. C., Guasselli L. A., Simioni J. P. D., Belloli T. F., and Fernandes P. C. B., 2021. Object-based classification of vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Science of Remote Sensing. 3, 100017.
https://doi.org/10.1016/j.srs.2021.100017.
Sarkheil, H., Rezaei, H. R., Rayegani, B., Khorramdin, S., and Rahbari, SH., 2021. Fuzzy dynamic system analysis of pollution accumulation in the Anzali wetland using empirical-nonlinear aspects of an economically-socio-environmental interest conflict.
Environmental Challenges. 2, 100025.
https://doi.org/10.1016/j.envc.2021.100025.
Sefidian, S., SalmanMahini, A., R., Mirkarimi, S., H., and Mirkarimi, N., Ali., 2015. Vegetation classification based on wetland index with the help of remote sensing and ground sampling (case study: Algal International Wetland). Wetland Ecobiology. 7 (2), 5-22. https://jweb.ahvaz.iau.ir/article-1-317-en.html.
Shah Hoseini, R., Azizi, K., Zarei, A., and Moradi, F., 2022. Object-Oriented Classification of Urban Areas Using a Combination of Sentinel-1 and Sentinel-2 Images. Iranian Journal of Remote Sensing & GIS, 14(3), 105-121. doi: 10.52547/gisj.14.3.105
Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S., and Teodoro, A. C., 2019. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors. 19(5), 1140.
https://doi.org/10.3390/s19051140.
Vizzari. M., 2022. PlanetScope Sentinel-2 and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine. Remote Sensing. 14(11), 2628.
https://doi.org/10.3390/rs14112628.
Wang, S., Chen, W., Xie, S. M., Azzari, G., and Lobell, D. B., 2020. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sensing. 12(2), 207.
https://doi.org/10.3390/rs12020207.
Wu, N., Shi, R., Zhuo, W., Zhang, C., Zhou, B., Xia, Z., and Tian, B., 2021. A classification of tidal flat wetland vegetation combining phenological features with Google Earth Engine. Remote Sensing. 13(3), 443.
https://doi.org/10.3390/rs13030443.
Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing. 27(14), 3025–3033. DOI:
10.1080/01431160600589179.
Yang, C., Zhang, C., Li, Q., Liu, H., Gao, W., Shi, T., and Wu, G. 2020. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecological Indicators. 115, 106373.
https://doi.org/10.1016/j.ecolind.2020.106373.