ارزیابی تاثیر متغیرهای کلان بر کیفیت محیط زیست در منطقه منا: رویکردهای میانگین لگاریتم دیوژیا و هم انباشتگی پانل

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه اقتصاد بین رشته ایی، دانشکده اقتصاد، دانشگاه تهران، تهران، ایران

چکیده

سابقه و هدف: این مقاله بر پایه رابطه کایا به بررسی آثار متغیرهای کلان بر کیفیت محیط زیست در منطقه منا می‌پردازد. فرآیند رشد و توسعه اقتصادی در کشورهای در‌ حال‌ توسعه،‌ از جمله ایران و سایر کشورهای خاورمیانه و شمال آفریقا، فشار فزاینده‌ای به محیط زیست وارد می‌آورد. هزینه تخریب‌های زیست‌محیطی در منطقه منا به حدود 5 درصد و در ایران به بیش از 7 درصد تولید ناخالص داخلی می‌رسد. از سوی دیگر، تخریب‌های زیست‌‌محیطی و انتشار آلاینده‌‌ها، پایداری رشد و توسعه مذکور را با تردید مواجه ساخته است. محدودیت‌هایی که محیط ‌زیست بر ادامه رشد و توسعه اقتصادی ایجاد می‌کند و خسارت‌های غیرقابل‌ بازگشت اقتصادی ناشی از تخریب و آلودگی محیط، لزوم توجه به محیط‌زیست در تصمیم‌گیری‌های کلان را بیش از پیش نمایان می‌سازد. در نتیجه با توجه به اهمیت محیط‌زیست و منابع انرژی در توسعه پایدار، سعی شده است تا سهم هر یک از عوامل جمعیت، تولید ناخالص ‌داخلی، شدت انرژی و شدت کربن بر انتشار دی‌اکسید کربن به‌عنوان شاخصی مهم در سنجش عملکرد متناسب با کیفیت محیط زیست و توسعه پایدار، شناسایی شود؛ زیرا از میان تمام گازهای گلخانه‌ای، دی‌اکسید کربن سهم 7/94 درصدی در گرمایش زمین دارد. مواد و روش‌ها: با توجه به مطالب ذکرشده، با استفاده از داده‌های مربوط به بازه زمانی 2011-1990 میلادی، بر پایه رابطه کایا سهم عوامل کلان ارزیابی شد؛ از رابطه کایا استفاده گسترده‌ای در مباحث مرتبط با انرژی و انتشار کربن می‌شود. نخست با استفاده از مدل میانگین لگاریتمی دیویژیا که یکی از روش‌های تجزیه پرکاربرد به شمار می‌آید، سهم هر یک از متغیرهای کلان در انتشار دی‌اکسید کربن در کوتاه‌مدت بررسی شد. سپس برای تحلیل بلندمدت با تعیین مقادیر ورودی مرتبط با کشورهای منطقه منا از روش پانل دیتا استفاده شد که نشان‌دهنده وجود هم‌انباشتگی در مدل بود. مفهوم هم‌انباشتگی تداعی‌کننده وجود یک رابطه تعادلی بلندمدت است که سیستم اقتصادی در طول زمان به سمت آن حرکت می‌کند. در مورد داده‌های هم‌انباشته پانل استفاده از مدل‌های پویا مانند تخمین‌زننده کاملا تعدیل‌شده (FMOLS)و تخمین‌زننده دینامیک(DOLS) موثرتر است. بنابراین مدل‌ هم‌انباشته کاملا تعدیل‌شده (FMOLS) بر متغیرها اعمال شد و نتایج حاصل از تخمین پارامترهای مدل در بلندمدت به دست آمد. نتایج و بحث: بررسی سوابق پژوهش در کشورهای توسعه‌یافته نشان می‌دهد که در این کشورها تغییرات جمعیت و تولید ناخالص داخلی در بلندمدت انتشار دی‌اکسید کربن را افزایش داده‌اند که این تغییر تا حدود زیادی به وسیله کاهش شدت انرژی و جانشینی انرژی‌های نو جبران شده است. نتایج تخمین این پژوهش حاکی از معناداری تاثیر تولید ‌‌ناخالص ‌داخلی، جمعیت و شدت کربن بر انتشار دی‌اکسید کربن است. نتایج مربوط به روش میانگین لگاریتمی دیویژیا در کوتاه‌مدت نشان می‌دهد در منطقه منا، عامل جمعیت بیشترین تاثیر را بر افزایش انتشار داشته است و پس از آن به ترتیب عوامل تولید ناخالص ‌داخلی، شدت انرژی و شدت کربن قرار دارند. در بازه‌های پنج ساله، عوامل جمعیت، تولید ناخالص‌ داخلی و شدت انرژی به صورت میانگین در جهت افزایش انتشار عمل کرده‌اند و عامل شدت کربن عملکردی معکوس داشته است. ضرایب حاصل از مدل پانل نشان می‌دهند که در بلندمدت افزایش جمعیت بیشترین تاثیر را بر انتشار کربن در منطقه منا داشته است؛ در رتبه دوم عامل شدت انرژی قرار دارد و عامل بعدی تولید ناخالص داخلی است. نتیجه‌گیری: با توجه به نتایج تخمین در کوتاه‌مدت و بلندمدت و مقایسه با وضعیت کشورهای توسعه‌یافته، شاخص شدت انرژی می‌تواند نقش کلیدی در بالا بردن کیفیت محیط زیست در کشورهای حوزه منا داشته باشد. در نتیجه، کشورهای منطقه نیازمند توجه سیاست‌گذاران توسعه برای بهبود شاخص شدت انرژی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing the impact of macroeconomic variables on environmental quality in the MENA using logarithmic mean divisia and co-integration panel

نویسندگان [English]

  • Ali Afzali
  • Vahid Majed
Department of Interdisciplinary Economics, Faculty of Economics, University of Tehran, Tehran, Iran
چکیده [English]

Introduction: Based on Kaya equation, this paper evaluates the effects of macroeconomic variables on the environment quality in MENA region. The process of economic growth and development in developing countries, including the Islamic Republic of Iran and other the Middle East and North Africa countries, have created increasing pressure on the environment. The costs of environmental degradation in the MENA region is about %5 of gross domestic production and in the Islamic Republic of Iran is over of %7 (Croitoru, Lelia et al, 2010). In the other hand, Environment damages and emissions have faced sustainable growth and development with doubt. Given the importance of the environment and energy resources in sustainable development, we try to identify impacts of the factors such as population, gross domestic production, energy intensity and carbon intensity on carbon dioxide emission as an important indicator to measure performance consistent with environment quality and sustainable development, because of all the greenhouse gases, the share of carbon dioxide emission in global warming is %94.7 (Nordhaus, 1990).Materials and methods: According to the above, on basis of Kaya relationship and by using the data from (1990-2011), we assessed the contribution of macro factors, the kaya identity has been widely discussed in analyses of energy-related carbon dioxide (CO2) emissions (O'Neill et al., 2000). In the first step, the share of each macroeconomic variables was investigated by using the Logarithmic Mean Divisia Index, Which is considered one of the most widely used decomposition techniques in the short term. To long-term analysis, After determining the input values related to MENA region, The panel data method was used that indicate the presence of co-integration in the model, Co-integration concept is reminiscent of a long-run equilibrium relationship between economic systems move over time towards it (Noferesti, 1999). The models such as fully modified ordinary least square (FMOLS) or dynamic ordinary least square (DOLS) is more effective methodin the case of co-integration panel data estimation (Chen et al., 1999). So FMOLS co-integrated model was applied on the variables and the results of parameter estimation was achieved in the long run.Results and discussion: Background checks in developed countries and areas shows that gross domestic production and demographic variances have increased the carbon dioxide emissions in these countries, whereas this change is largely offset by the decrease in energy intensity and substitution of renewable energies, in the long- run term. Parameter estimation results in this research suggest a significant long-term impact on GDP, population and the carbon intensity on carbon dioxide emission. In the region, Results of the Logarithmic Mean Divisia method in the short term show that the demographic factor has the greatest impact on emissions and gross domestic production, energy intensity and carbon intensity are. At five-year intervals and on average, demographic, gross domestic production and energy intensity have been increasing emissions and carbon intensity has been the reverse impact. Coefficients of panel models show that in the long term population growth in the MENA region has the greatest impact on carbon emissions, Energy intensity is the next .Conclusion: According to the results of short-term and long-term, compared with developed countries, energy intensity index can play a key role in enhancing the quality of the environment in MENA countries. hence, the region needs attention from policy-makers to improve energy intensity index.

کلیدواژه‌ها [English]

  • CO2 emissions
  • Co-integration
  • Environmental Economy
  • Logarithmic Mean Divisia
  • Sustainable development
  1. Aghaii, Majid and Rezagholizade, Mahdieh, 2015. Energy consumption and added value growth in different sectors of Iran's economy: co-integration and error correction panel. Region economy and development. 9, 31-67. (In Persian with English abstract)
  2. Ang, B. W, 2004. Decomposition analysis for policymaking in energy: which is the preferred methods? Energy policy, 32, 1131-1139.
  3. Arbab, Hamidreza, 2013. Natural Resources and Environmental Economics. Ney. Tehran
  4. Baltagi, Badi H. 2005. Econometric Analysis of Panel Data. John Wiley & Sons. New York.
  5. Barbier, E.B. Pearce, D.W., 1990. Thinking economically about climate change. Energy Policy, 18, 11-18.
  6. Croiture, Leila and Sarraf, Maria, 2010. The cost of environmental degradation: case studies from the Middle East and North Africa. The World Bank. Washington DC.
  7. Engle, Robert F. Granger, C. W. J., 1987. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrics, 55, 251-276.
  8. Feghhe Majidi, Ali and Ebrahimi, Salah, 2014. Applied economic using panel data. Noore elm. Tehran.
  9. Ghasemi, Iraj, 2014. Decomposition of factors affecting variances of CO2 emission in Iran's industrial subdivision. Studies of applied economic. 9, 115-131. (In Persian with English abstract).
  10. Goodarzi Rad, Reza, 2010. Investigating the causes of change in energy consumption in Iran's energy industry. Iran's energy. 3, 79-84. (In Persian with English abstract).
  11. Hansen, J, 1988. Global climate changes as forecast by Goddard Institute for Space Studies three dimensional model. Geophysical Research, 93, 9341-9364.
  12. Im, 2003. Testing for unit roots in heterogeneous panels. J. Econ. 115 (1), 53–74.
  13. IPCC, 1990. Second Draft Reports of the Intergovernmental panel on Climate Change (Climate, Impact and Policy Groups.).
  14. Jeffs, Eric J, 2010. Green Energy, Sustainable Electricity Supply with Low Environmental Impact. Boca Raton: Taylor & Francis group.
  15. Kao, C. and Chiang, M. H., 2000. On the estimation and inference of a co-integrated regression in panel data. In: Baltagi, B.H. (Ed.), Advances in Econometrics: Nonstationary Panels. Panel Co-integration and Dynamic Panels, 15, 179–222.
  16. Khalili araghi, Mansour, Sharzei, Gholamali and Barkhordari, Sajjad, 2012. Decomposition analysis of CO2 emissions resulting from energy consumption in Iran. Ecology. 61, 93-104. (In Persian with English abstract).
  17. Li, Xianguo, 2011. Green Energy: Basic Concepts and Fundamentals. Springer. London.
  18. Lotfalipour, Mohammadreza and Ashna, Malihe, 2010. Investigating the effecting factors on CO2 emission change in Iran's economy. Energy economy studies. 24, 121-145. (In Persian with English abstract).
  19. Megasukma, Yosa, 2013. A simple Guide to LMDI Decomposition Analysis. Department of Industrial and system Engineering National University. Singapore.
  20. Mundaca L, Luth-Richter J, 2015. Assessing ‘‘green energy economy” stimulus packages: evidence from the US programs targeting renewable energy. Renew Sustain Energy, 42, 1174–1186.
  21. Noferesti, Mohammad, 1999. Unit root and Co-integration in Econometric. Rasa. Tehran.
  22. Nordhaus, W, 1990. An International General Equilibrium Model of Economic Growth and Climate Change. Yale University. Paper presented at Workshop on Economic/Energy/Environmental Modelling for Climate Policy Analysis, Washington, DC, USA.
  23. Oh, I, 2010. Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea. Energy Policy, 38, 364-377.
  24. Pedroni, P., 2004. Panel co-integration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econ. Theory. 20 (3), 597–625.
  25. Perman, Roger. Ma, Yue. and McGilvray, James, 1996. Natural Resource and Environmental Economics. Longman. London.
  26. Pourebadollahan koych, Mohsen, Barghi oskooi, Mohammad Mahdi, Sadeghi, Seyedkamal and Ghasemi, Iraj, (2014). Decomposition of factors affecting carbon dioxide emissions in Iran's industrial subdivision. Iran's Applied Economics Studies. 9, 115-131. (In Persian with English abstract).
  27. Souri, Ali, 2015. Econometric. Farhang shenasi. Tehran.
  28. Strand J, Toman M, 2010. Green stimulus, Economic recovery and long term. Sustainable Development, Working paper, Washington DC, USA.
  29. United Nations Environment Management Group, 2011. Working toward a Balanced and Inclusive Green Economy: A United Nations System- wide Perspective. Geneva.
  30. Wang C, Chen J, Zou J, 2005. Decomposition of energy related CO2 emission in china: 1975-2000. Energy, 30(1), 73-83.
  31. Wingqvist, Gunilla and Drakenberg, Olof, 2006. Environmental and Climate Change Analysis. Environmental Economics Unit (EEU), Department of Economics, University of Gothenburg. Gothenburg.