بکارگیری تصاویر ماهواره‌ای و پردازش شیء‌گرا در استخراج نقشه کاربری و پوشش زمین ها با هدف مدل‌سازی خدمات اکوسیستم (مطالعه موردی: استان لرستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط‌ زیست و شیلات، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم‌آباد، ایران

2 گروه برنامه ریزی و طراحی محیط زیست، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

3 گروه جنگل، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، ایران

چکیده

سابقه و هدف:
با توجه به اهمیت ویژه نقشه های خدمات اکوسیستم در تصمیم گیری، رویکردهای مختلفی برای نقشه سازی خدمات اکوسیستم توسعه داده شده است. نرمافزار InVEST مبتنی بر مدلهایی است که داده کاربری و پوشش زمینها را با عرضه خدمات اکوسیستم مرتبط میسازد، به طوریکه کاربری زمینها، یک مؤلفه اساسی برای کلیه مدلها محسوب میشود. درحال حاضر فنآوری سنجش از دور یکی از تکنیک های برتر دراستخراج نقشه کاربری و پوشش زمینها با استفاده از دو روش پیکسل پایه و شیءگرا محسوب میشود. درحالیکه روش پیکسل پایه مبتنی بر طبقه بندی ارزشهای عددی تصویرهامی باشد،پردازش شیءگرای تصاویر به دلیل استفاده از مطالعات طیفی و مطالعات مربوط به بافت و محتوا نیز در فرآیند طبقه بندی از دقت باالاتری برخوردار است. به طوریکه کاربرد گسترده ای در تمامی بخشها از جمله علوم محیطی دارد.در این راستا پژوهش حاضر با هدف بکارگیری تصاویر ماهواره ای و پردازش شیءگرادر تهیه نقشه کاربری و پوشش زمینهای استان لرستان و مدلسازی خدمات زیستگاهی انجام شد.
مواد و روشها:
پژوهش با بکارگیری نرم افزارهای 9.01 eCognition و 0.InVEST3 طی چهار گام شامل آماده سازی الیه های مطالعاتی، پردازش شیءگرای تصویرهای ماهوارهای، طبقه بندی شیءگرا و در نهایت مدلسازی خدمات زیستگاهی انجام شد. تصاویر دو ماهوارهلند ست و سنتینلدر محیط نرم فزار eCognition فیوژن شده و در تلفیق با داده های مدل رقومی ارتفاع سنجنده ASTER مورد پردازش قرار گرفته است. سگمنت سازی به عنوان اولین مرحله طبقه بندی شیءگرا با استفاده از الگوریتم Segmentation Multiresolution انجام شد. به دلیل بزرگی منطقه مورد مطالعه و قدرت تفکیک مکانی  متوسط تصاویر لندست، تصاویر با مقیاس 30 ،ضریب شکل 0.4 و فشردگی0.5 سگمنت سازی شد و بر اساس الگوریتم فازی اشتراک ،کاربری های مورد نظر  با استفاده از سنجه هایی نظیربافت ، شاخص تفاضل نرمال شده پوشش گیاهی  ، هندسه ، ترکیب سطوح خاکستری پیکسل و درجات روشنایی طبقه بندی شدند که در این رابطه الگوریتم طبقه بندی class Assign مورد استفاده قرار گرفت. سپس با مطابقت دادن نقشه مستخرج با 130 نقطه تعلیمی،دقت و صحت طبقه بندی با ضریب کاپا مشخص شد. در ادامه نقشه کاربری و پوشش زمین ها به منظور مدلسازی خدمات زیستگاهی وارد نرم افزار InVEST شد.
نتایج و بحث:
نتایج و آمار به دست آمده برای دقت و صحت طبقه بندی با پردازش شیءگرا نتایج قابل قبولی را بیان کرد به طوریکه ضریب کاپای طبقه بندی معادل 0.93 برآورد شد. در محدوده مورد مطالعه طبقات کاربری و پوشش زمین ها در شش طبقه شامل کشاورزی آبی و دیم، جنگل، مرتع، منطقه های انسان ساخت و منبع های آب تهیه شدند. بنابر نتایج،مرتع هاو جنگل با درصد مساحت 39.8 و 33 درصد بیش از 72.8 درصد سطح استان لرستان را به خود اختصاص داده اند. از جمله مشکلات تهیه نقشه کاربری زمین ها به عدم توانایی تصاویر ماهوارهای لندست با ابعاد پیکسلی 30 متری در تفکیک زارعت دیم، مرتع ها و جنگلهای کمتراکم به دلیل تشابه طیفی آنها و همچنین منطقه های روستایی به دلیل سطح کوچک آنها اشاره نمود. بنابراین سعی شد که با استفاده از تغییر ویژگی های سگمنت نظیر شکل، تن، بافت و همچنین مطالعات جانبی این محدودیت برطرف شود. برای هر طبقه کاربری زمین ها درجه مطلوبیت زیستگاه در نظرگرفته شد. همچنین حساسیت هریک از تیپ های زیستگاه به تهدیدات موردنظردر منطقه موردمطالعه وزن دهی شد. عاملهای تهدید انسانی مؤثر بر کیفیت زیستگاه در سه گروه زمینهای کشاورزی، منطقه های مسکونی و جاده هاقرار گرفتند. در نهایت با اجرای مدل، سنجه کیفیت زیستگاه با ارزشی بین صفر تا یک حاصل شد.
نتیجه گیری:
رویکردهای مختلفی برای نقشه سازی خدمات اکوسیستم وجود دارد که یکی از آنها استخراج مطالعات خدمات اکوسیستم به طور مستقیم از نقشه های کاربری و پوشش زمینها است. چنین رویکردی برای آن دسته از منطقه های بزرگ مقیاس مناسب است که از نظردادههای دردسترس و نیروی متخصص محدودیت دارند و خدمت مورد بررسیبهطور مستقیم با کاربری زمین ها مرتبط است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of satellite images and object-oriented processing in land use/land cover map extraction to model ecosystem services (case study: Lorestan province)

نویسندگان [English]

  • Zahra Asadolahi 1
  • Mostafa Keshtkar 2
  • Zia Badehian 3
1 Department of Environment and Fisheries, Faculty of Agriculture and Natural Resources, Lorestan University, Khorram Abad, Iran
2 Department of Environmental Planning, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
3 Department of Forest Science, Faculty of Agriculture and natural resources, Lorestan University, Khorram Abad, Iran
چکیده [English]

Introduction:
Due to the importance of ecosystem services mapping in decision making, different approaches have been developed for mapping ecosystem services. InVEST software is based on models that combine land use/cover with ecosystem services, and so land use is considered an essential component of all models. Currently, remote sensing technology is one of the top techniques in land use/cover map extraction using both pixel-based and object-oriented methods. While the pixel-based method is based on the classification of numerical values of images, object-oriented image processing is more accurate in the classification process, due to the use of spectral information, texture, and content information, being widely used in all sectors including environmental sciences. In this regard, the present study aimed to apply satellite images and object-oriented processing in land use/cover mapping and habitat services modeling.
Material and methods:
The research was carried out using eCognition 9.01 and InVEST3.0 software in four steps including preparing information, object-oriented processing of satellite images, object-oriented classification, and finally, habitat modeling. Images of Landsat and Sentinel satellites were fused to the eCognition software and processed in conjunction with ASTER digital elevation model data. Segmentation was performed as the first step of object-oriented classification using multi-resolution segmentation algorithm. Due to the size of the study area and the average spatial resolution of Landsat images, the images were segmented with 30 scales, 0.4 coefficient, and 0.5 compression. Geometry, vegetation (NDVI), Pixel Gray Surface Composition (GLCM), and lighting degrees were classified using the Assign class classification algorithm. Then, by matching the extracted map with 130 teaching points, the accuracy of the kappa coefficient was determined. Next, land use/cover map was introduced into InVEST software.
Results and discussion:
The results and statistics obtained from object-oriented classification accuracy presented acceptable results with a kappa coefficient of 0.93. In the study area, land use/cover classes were prepared in six categories including irrigated and rain-fed agriculture, forest, rangeland, man-made areas, and water resources. According to the results, rangeland and forest types with an area of 39.8% and 33.0% covered more than 72.8% of Lorestan Province’s area. Major problems with land use mapping were the inability of 30-m pixel Landsat satellite imagery to distinguish between rain-fed agriculture, rangeland, and low-density forest types due to their spectral similarity as well as rural areas due to their small surface area. Hence, we attempted to overcome this limitation by modifying the segment characteristics such as shape, tone, texture, and other information. Habitat suitability was considered for each land use class. The susceptibility of each habitat type to the threats in the study area was also weighted. Human threats affecting habitat quality were classified into three groups of agricultural lands, residential areas, and roads. Finally, the model was implemented and a habitat quality index was obtained with values ranging from zero to one.
Conclusion:
There are different approaches to ecosystem services mapping, one of which is extracting ecosystem services information directly from land use/cover maps. Such an approach is appropriate for large-scale areas that are restricted in terms of available data and expert knowledge, and the service is directly related to land use.

کلیدواژه‌ها [English]

  • InVEST
  • Landsat
  • Sentinel
  • Habitat services
  1. Asadolahi, Z., Salmanmahiny, A., Sakieh, Y., Mirkarimi, S.H., Baral, H. and Azimi, M., 2018. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: towards putting ecosystem services into planning in Iran. Ecological Complexity. 36, 250-260.
  2. Baban, S.M. and Wan Yusof, K., 2001. Mapping land use/cover distribution on a mountainous tropical island using remote sensing and GIS. International Journal of Remote Sensing. 22(10), 1909-1918.
  3. Bagstad, K.J., Semmens, D.J., Waage, S. and Winthrop, R., 2013. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosystem Services. 5, 27-39.
  4. Balvanera, P., Castillo, A. and MartÍnez-Harms, M.J., 2011. Ecosystem Services in Seasonally Dry Tropical Forests. In Seasonally Dry Tropical Forests (pp.259-277). Island Press, Washington, DC, USA.
  5. Batista e Silva, F., Lavalle, C. and Koomen, E., 2013. A procedure to obtain a refined European land use/cover map. Journal of Land Use Science. 8(3), 255-283.
  6. Burkhard, B., Kroll, F., Müller, F. and Windhorst, W., 2009. Landscapes’ capacities to provide ecosystem services–a concept for land-cover based assessments. Landscape Online. 15(1), 1-22.
  7. Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S.J., Kubiszewski, I., Farber, S. and Turner, R.K., 2014. Changes in the global value of ecosystem services. Global Environmental Change. 26, 152-158.
  8. Eigenbrod, F., Armsworth, P.R., Anderson, B.J., Heinemeyer, A., Gillings, S., Roy, D.B., Thomas, C.D. and Gaston, K.J., 2010. The impact of proxy‐based methods on mapping the distribution of ecosystem services. Applied Ecology. 47(2), 377-385.
  9. Feizizadeh, B. and Helali, H., 2010. Comparison pixel-based, object-oriented methods and effective parameters in classification land cover/ land use of west province Azerbaijan. Physical Geography Research. 42(71), 78-99. (In Persian with English abstract).
  10. Feizizadeh, B., Jafari, F. and Nazmfar, H., 2008. Application of remote sensing data in change detection of urban land uses. Honar-Haye-Ziba. 34, 17-24. (In Persian with English abstract).
  11. Feizizadeh, B., Khedmatzadeh, A. and Nikjoo, M., 2018. Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation. Researches in Geographical Sciences. 18(48), 201-216. (In Persian with English abstract).
  12. Ghorbani, R., Poormohamadi, M. and Mahmoudzadeh, H., 2013. Ecological Approach in land use change modeling of Tabriz metropolitan using multi temporal satellite images, multi criteria analysis and Cellular Automata Markov Chain (1984-2038). Urban Studies. 16, 13-30. (In Persian with English abstract).
  13. Haines-Young, R., Potschin, M. and Kienast, F., 2012. Indicators of ecosystem service potential at European scales: mapping marginal changes and trade-offs. Ecological Indicators. 21, 39-53.
  14. Han, Y., Kang, W., Thorne, J. and Song, Y., 2019. Modeling the effects of landscape patterns of current forests on the habitat quality of historical remnants in a highly urbanized area. Urban Forestry & Urban Greening. 41, 354-363.
  15. He, J., Huang, J. and Li, C., 2017. The evaluation for the impact of land use change on habitat quality: a joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecological Modeling. 366, 58-67.
  16. Healy, M. and Secchi, S., 2016. A comparative analysis of ecosystem service valuation decision support tools for wetland restoration. Association of State Wetland Managers. Windham, ME, USA.
  17. Keshtkar, M., 2018. Land sustainable planning based on strategic assessment of ecosystem services (case study: Zagros Biom’s in Iran). M.Sc. Thesis. Shahid Beheshti University, Iran. (In Persian with English abstract).
  18. Lavalle, C., Baranzelli, C., e Silva, F.B., Mubareka, S., Gomes, C.R., Koomen, E. and Hilferink, M., 2011. A high resolution land use/cover modelling framework for Europe: Introducing the EU-ClueScanner100 model. In: Murgante B., Gervasi O., Iglesias A., Taniar D., Apduhan B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6782. Springer, Berlin, Heidelberg, Germany.
  19. Maes, J., Egoh, B., Willemen, L., Liquete, C., Vihervaara, P., Schägner, J.P., Grizzetti, B., Drakou, E.G., La Notte, A., Zulian, G. and Bouraoui, F., 2012. Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services. 1, 31-39.
  20. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Scenarios: Findings of the Scenarios Working Group (Vol. 2). Island Press, USA.
  21. Mobarghaei, N., 2008. Presentation and application of spatial evaluation model of forest ecosystem services using geographic system. Ph.D. Thesis. Environmental Planning, University of Tehran, Iran. (In Persian with English abstract).
  22. Nahlik, A.M., Kentula, M.E., Fennessy, M.S. and Landers, D.H., 2012. Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. Ecological Economics. 77, 27-35.
  23. Niquisse, S., Cabral, P., Rodrigues, A. and Augusto, G., 2017. Ecosystem services and biodiversity trends in Mozambique as a consequence of land cover change. Biodiversity Science, Ecosystem Services & Management. 13(1), 297-311.
  24. Rezaei Moghadam, M., Rezaeibanafshe, M. and Feizizadeh, B., 2010. Land cover/land use classification based on object oriented techniques and satellite images, case study: west Azerbaijan province. Watershed Management Research. 87, 20-36. (In Persian with English abstract).
  25. Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A., Tallis, H. and Taylor, R., 2014. InVEST User's Guide: Integrated Valuation of Environmental Services and Tradeoffs. The Nature Conservancy & WW Foundation Stanford, USA.
  26. Statistical Yearbook of Lorestan, 2014. Available online at: https://www.amar.org.ir.
  27. Vihervaara, P., Kumpula, T., Tanskanen, A. and Burkhard, B., 2010. Ecosystem services–A tool for sustainable management of human–environment systems. Case study Finnish Forest Lapland. Ecological Complexity. 7, 410-420.
  28. Yan, G., 2003. Pixel Based and Object Oriented Image Analysis for Coal Fire Research. ITC, Switzerland.
  29. Zarandian, A., Baral, H., Stork, N.E., Ling, M.A., Yavari, A.R., Jafari, H.R. and Amirnejad, H., 2017. Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy. 61, 487-500.
  30. Zulian, G., Paracchini, M.L., Maes, J. and Liquete, C., 2013. ESTIMAP: Ecosystem services mapping at European scale. Publications Office of the European Union, Luxembourg.