ارزیابی مقاومت و بیش‌اندوزی سرب به وسیله گیاه سلمه‎تره (chenopodium album L.) در خاک‌های آلوده به فلزات سنگین

نوع مقاله : مقاله کوتاه

نویسندگان

1 دانشگاه آزاد اسلامی

2 دانشگاه تربیت مدرس،

3 دانشگاه گیلان،

چکیده

مقاومت و جذب آلاینده‌ها به‎ویژه فلزات سنگین به‌ وسیله گیاهان مختلف متفاوت است. چنان‎چه بتوان گیاهان مقاومی یافت که قادر باشند مقداری از آلودگی‌های موجود در آب و یا خاک را کاهش دهند می‌توان از آن‌ها برای آلودگی‌زدایی منابع آلوده استفاده کرد. هدف از این پژوهش بررسی توا‎نایی گیاه شورپسند سلمه‎تره در استخراج گیاهی سرب و تعیین زمان پالایش سرب از خاک‎های سطحی آلوده به وسیله این گیاه بود. بدین منظور آزمایشی در قالب طرح کاملاً تصادفی با شش تیمار شاهد، 150، 300، 600، 900 و 1200 میلی‎گرم سرب در هر کیلوگرم خاک و چهار تکرار اجرا گردید. پس از طی دوره رشد، گیاهان برداشت و میزان سرب در ریشه و اندام هوایی گیاه اندازه‎گیری شد. نتایج نشان داد‎ که رابطه‌ای مثبت و غیر خطی بین مقدار سرب تجمع یافته در ریشه و اندام هوایی با غلظت سرب خاک وجود دارد. بیشترین مقدار سرب تجمع یافته در ریشه و اندام هوایی به ترتیب 75/64 و 125/4 میلی‎گرم بر کیلوگرم بود. بیشترین مقدار ماده خشک در یک سال در تیمار 600 میلی‎گرم برکیلوگرم نزدیک به 35 تن در هکتار به‌دست آمد و کمترین زمان پالایش هم در تیمار 600 میلی‎گرم بر کیلوگرم و برابر با 9 سال بود که در سطح 5% از آلودگی سربی به‌دست آمد. بنابراین با توجه به امکان برداشت سلمه‎تره تا سه بار در سال، توان بالای بیش‎اندوزی و تولید زیست توده فراوان، می‌توان از این گیاه برای پالایش خاک‎های آلوده به سرب استفاده کرد.

کلیدواژه‌ها


  1. Asadi Kapourchal S O, Asadi Kapourchal S, Pazira E, Homaee M. Assessing radish (Raphanus sativus L.) potential for phytoremediation of Lead- contaminated soils resulting from air pollution. Soil plant and environment Journal; 2009; 55(5): 202-206.
  2. Asadi Kapourchal S, eisazadeh S, Homaee M. Phytoremediation of cadmium polluted soils resulting from use of phosphorus fertilizers. Proceeding of European Biotechnology Thematic Network Association congress. Istanbul, Turkey, 2011; S 37.
  3. Raskin I, Smith R D, Salt D E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology; 1997; 8 (2): 221-226.
  4. Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gushsman C, Kapulink Y, Ensley B D, Raskin I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology; 1997; 31: 860-865.
  5. Glick B R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances; 2003; 21(5): 383-393.
  6. Kumar P B A N, Dushenkov V, Motto H, Raskin I. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils. Environmental Science and Technology; 1995; 29:1232-1238.
  7. Raskin I, Kumar N P B A, Dushenkov S, Salt D E. Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology; 1994; 5 (3):285-290.
  8. Salt D E, Blaylock M, Kumar N P B A, Dushenkov V, Ensley B D, Chet I, Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology; 1995;13:468-474.
  9. Zhuang P, Yang Q W, Wang H B, Shu W S. Phytoextraction of heavy metals by eight plant species in the field. Water Air and Soil Pollution; 2007;184:235–2.
  10. Sahmurova A, Celik M, Allahverediyev S. Determination of the accumulator plants in Kucukcmece lake (Istanbul). African Journal of Biotechnology; 2010;9(39):6564-6551.
  11. Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere; 2003; 52(1):265-275.
  12. Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology, and phytochemistry. Biorecovery; 1989;1:81-126.
  13. Henry JR. An overview of the phytoremediation of lead and mercury. U.S. environmental protection agency office of solid waste and emergency response technology innovation office. Washington, D.C; 2000.
  14. Eid M A. Halophytic plants for phytoremediation of heavy metals contaminated soil. The Journal of American Science; 2011;7(8):377-382.
  15. Dalalian M, Homaee M. Simulating of Phytoremediation Time of Cadmium and Copper Spiked Soils by Salvia sclarea.Water and Soil Science Journal; 2011;20(4):129-141. [In Persian]
  16. Davari M, Homaee M. Modeling phytoremediation of Ni and Cd from contaminated soils using macroscopic transpiration reduction functions. Science and Technology of Agriculture and Natural Resources, water and soil science Journal; 2010;14(52):75-84. [In Persian]
  17. Davari M, Homaee M. A new yield multiplicative model for simultaneous phytoextraction of Ni and Cd from contaminated soils. Water and Soil Journal; 2012;25(6):1333-1343. [In Persian]
  18. Jafarnejadi A R, Homaee M, Sayyad Gh. A. Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination Journal; 2011;20(1):93-99.
  19. Mohamadipour F, Asadi Kapourchal S. Assessing land cress potential for phytoextraction of cadmium from Cdcontaminated soils. Water and Soil Resources Conservation; 2012;(2)2:25-35. [In Persian]
  20. Cariny T. The re-use of contaminated land. John Wiley and Sons Ltd. Pub., USA. 1995.
  21. Khodaverdiloo H, Homaee M. Modeling Phytoremediation of Soils Polluted with Cadmium and Lead. Science and Technology of Agriculture and Natural Resources, water and soil science Journal; 2008;11(42):417-426. [In Persian]
  22. Mousavi S M, Ahmadabadi Z, Bahmanyar M A. Investigation the Hyper-accumulative Potential of Creeping Wheat Grass (Agropyronrepens L.) and Berseem Clover (Trifolum Alexanderium L.) in Adsorption of Heavy Metals from Treated Soil with Sewage Sludge. Water and wastewater; 2015;In Press.
  23. Greman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil; 2001; 235:105-114.
  24. Gupta P K. Soil, Plant, Water and Fertilizer Analysis. Agrobios, New Dehli, India; 2000.
  25. Schnoor J L. Phytoremediation. GWRTAC (Ground-Water Remediation Technologies Analysis Center) Technology Evaluation Report TE-98-01; 1997. P.150.
  26. Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh D P, Barman S C. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological Engineering; 2013; 61:491-495.
  27. Sun Y, Zhou Q, Diao Ch. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology; 2008; 99:1103-1110.
  28. Huang J W, Cunningham S D. Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist; 1996;145:75-84.
  29. Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wet land plant species thriving in critical contaminated. sites in china. Environmental Pollution; 2004;132 (1):29-40.