بررسی تخریب نوری، تجزیه زیستی،جذب آب و خواص مکانیکی پلاستیک های تخریب پذیر جهت استفاده در صنایع بسته بندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، واحد دماوند، دانشگاه آزاد اسلامی، دماوند، ایران

2 تاریان زیست سپهر دماوند، مرکز رشد دانشگاه آزاد اسلامی واحد دماوند، دماوند، ایران

چکیده

سابقه و هدف:
پسماندهای حاوی مواد پلاستیکی  بخصوص تبدیل به معضلی در سراسر جهان شده اند. مدت زمان تجزیه مواد پلیمری پایه نفتی در محیط زیست طولانی می باشد.  بسته بندی پلاستیکی یکی از معمول ترین منابع تولید این پسماندها می باشد. یکی از راهکارهای مقابله با این مشکل استفاده از پلاستیک های تخریب پذیر است.یکی از روش های تولید پلاستیک های زیست تخریب پذیر آمیزه سازی این مواد با پلیمرهای طبیعی است. تخریب نوری نیز یکی از انواع روش های تجزیه این مواد در طبیعیت می باشد که به نظر می رسد برای پلاستیک های قابل استفاده در صنایع بسته بندی که در بیشتر موارد عمدا یا سهوا توسط شهروندان در طبیعت رها می­ شود راهکار مناسبی است.
مواد و روش ­ها:
در این پژوهش آمیزه قابل تخریب نوری و زیست تخریب پذیری از نشاسته و پلی اتیلن سبک خطی  جهت استفاده در صنایع بسته بندی مورد بررسی قرار گرفته است.  مقادیر مختلفی از نشاسته(7/3%،4/7%، 10%، 15% و 20%) در آمیزه ها تهیه شده است. از پلی اتیلن مالئیک انهیدرید بعنوان کوپلینگ ایجنت استفاده شده است. بررسی خواص مکانیکی ،جذب آب و رشد قارچ بروی نمونه ها انجام گرفته است. نمونه ها به مدت 3 ماه در نور مستقیم خورشید قرار داده شده اند. آزمون مقاومت کششی قبل و بعد از قرار گیری نمونه ها در معرض نور خورشید انجام گرفته است. نمونه ها به مدت 11 ماه درون خاک قرار داده شدند تا تخریب زیستی آنها بررسی گردد. نمونه ها به مدت 84 روز در معرض آسپرژیلوس نیجر قرار داده شدند. 
نتایج و بحث:
طبق بررسی های انجام شده با افزایش میزان نشاسته مقاومت کششی آمیزه  و مدول یانگ کاهش می یابد، پس از 3 ماه در معرض نور قرار گرفتن مقاومت مکانیکی و مدول یانگ به مراتب کاهش یافت. نتایج آزمون جذب آب نشان داد که با افزایش میزان نشاسته بر جذب آب نمونه ها افزوده شده است. جذب آب به وزن ملکولی و تعداد گروه های هیدروکسیل موجود بستگی دارد .مقایسه وزن نمونه ها قبل و بعد از دفن در خاک  نشانگر تخریب زیستی نمونه ها ست، کاهش وزن نمونه های حاوی نشاسته پس از 11 ماه قرار گیری در خاک است است. افت در خواص مکانیکی بر اثر آزاد شدن نشاسته و خروج نشاسته رخ داده است . هر چه مقادیر نشاسته در آمیزه‌ها کمتر باشد آمیزه تحت تأثیر ماتریس پلی‌اتیلن سبک قرار گرفته و در دسترس میکروارگانیسمها قرار نمی‌گیرد. ذرات نشاسته‌ای که در سطح نمونه قرار می‌گیرند زودتر در معرض تخریب زیستی قرار می‌گیرند با افزایش زمان ماند نمونه‌ها در خاک میکروارگانیسمها و آنزیمهای آنها به قسمتهای درونی ماتریس پلیمری نفوذ کرده و سبب تجزیه کل پلیمر می‌شوند. رشد قارچ بروی نمونه های حاوی مقادیر مختلف نشاسته، نشانگر قابلیت تجزیه زیستی  نمونه های پلیمری توسط میکروارگانیسم ها می­باشد. زیست تخریب‌پذیری میکروبی به ظرفیت میکروارگانیسم و متابولیسم میکروبی وابسته است. 
نتیجه ­گیری:
با توجه به نتایج بدست آمده پلیمر تولیدی زیست تخریب پذیر و قابل تخریب نوری می باشد. و قابلیت استفاده در صنایع بسته بندی را دارد. دفن در خاک شبیه سازی محل دفن زباله می باشد. در صورتی که این نمونه ها در محیط تجزیه مناسب قرار گیرند کم دجار افت خواص می شوند و شروع به تخریب می نمایند. شایان ذکر است که نمونه های تولید شده جهت بسته بندی مواد غیر خوراکی مناسب می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Study of photodegradation, biodegradability, water absorption, and mechanical properties of biodegradable plastics for using in packaging industries

نویسندگان [English]

  • Shahrzad khoramnejadian 1
  • Shirin Khoramnejadian 2
1 Department of environment,Damavand branch, Islamic Azad University,Damavand, Iran
2 Tarian zist Sepehr Damavand, Roshd Center, Damavand Branch, Islamic Azad University, Damavand, Iran
چکیده [English]

Introduction:
Plastic wastes are becoming a major problem all around the world. Degradation of synthetic polymers takes a long time, and so they remain in the environment for many years. Plastic packagings are one of the main sources of solid wastes. Using biodegradable plastic may be a solution to this problem. Mixing  synthetic polymers with biopolymers is one way to produce biodegradable plastics. Another way to degraded plastic materials is photodegradation. Photodegradable plastics could be used in packaging industries because a huge amount of packaging plastics are being thrown away in nature.
Material and methods:
In this research, photodegradable and biodegradable compounds of starch and linear low-density polyethylene were prepared. Samples with different levels of starch (i.e., 3.7, 7.4, 10, 15, and 20 %wt) with a constant amount of 5% PE-g-MA were prepared. PE-g-MA used as coupling agent. The mechanical properties of polymer sample were done by santam instrument. Water absorpton of starch base polymer were evaluated. Soil burial tests shown the biodegradability of samples in the nature. starch-based polymer was exposed to mold growth to simulate biotic degradation. Photodegradability of samples were measured by exposure them to sunlight for 3 months. In order to determine bacterial degradability, samples were exposed to aspergilus niger for 84 days.
Results and discussion:
The tensile strength and Young’s modulus were decreased by the increase in starch content of the samples. The results of water absorption of the samples showed that when the starch percentage was higher, the water absorption was significantly increased. After being buried in soil for 11 months, the weight of the blends was decreased by increasing the starch level, which is an indication of biodegradation. The weight loss after removal of starch was probably caused by soil microorganisms. If the amount of starch is low, the compound would be affected by the low-density polymer matrix and unavailable to soil microorganisms. The more the samples remained in the soil, the more consumption of polymer chain by microorganism happened. Mold growth on polymeric samples confirmed the biodegradability of LLDPE/starch sheets. Mould biodegradation depends on microorganisms and their metabolism.
Conclusion:
According to the results, the blends are biodegradable and photodegradable and so are applicable in packaging industries. Soil burial is a simple simulation of the landfill. These blends are suitable for packaging goods.

کلیدواژه‌ها [English]

  • Biodegradable polymer
  • Starch
  • Mechanical property
  • Water absorption
  • Packaging
  1. Abdul Rahman, W., Rasit Ali, R. and Zakaria, N., 2006. Studies on Biodegradability, Morphology and Mechanical Properties of Low Density Polyehtylene/Sago Based Blends, In proceeding 1st Int Conferences Natural Resource Engineering & Technology ,Malaysia, 24-25th July.putrajaya, p.434.
  2. Raj, B. and Sankar, U., 2004. LLDPE/Starch Blend Films for Food Packaging Applications. Advances in Polymer Technology. 23, 32-45.
  3. Bastioli, C., 2005. Handbook of Biodegradable Polymers, Rapra Technology Limited, UK.
  4. Bikiaris, D. and Panayiotou, C., 1998. LDPE/Starch blends compatibilized with PE-g-MA Copolymers. Journal of Applied Polymer Science. 70, 1503–1521.
  5. Shibata, A., Yada, S. and Terakava, M., 2016. Biodegradability of poly (lactic-co-glycolic acid) after femtosecond laser irradiation. A Natureresearh Journal, Scientific Reports. 6(1), 27884.
  6. Dallyn, H. and Shorten, D., 1998. Hygiene aspects of packaging in the food industry. International Biodeteriration. 24(4-5), 387-392.
  7. Dukalska, L., Muizniece-Brasava, S., Kampuse, S., Deglina, D., Straumite, E., Galoburda, R. and Levkane, V., 2008. Studies of biodegradable psandra olymer material suitability for food packaging applications. In proceeding 3rd Baltic Conference on Food Science and Technology FOODBALT-2008. Jelgava, Latvia.p.64.
  8. Nakamura, E.M., Cordi, L., Almeida, G.S.G., Duran, N. and Mei, L.H.I., 2005. Study and development of LDPE/starch partially biodegradable compounds. Journal of materials processing technology. 162, 236-241.
  9. Salleh, E. and Mutramad, I., 2007. Mechanical properties and antimicrobial analysis of antibacterial starch based films, International Conference on Advancement of Materials and Nanotechnology, The City Bayview Hotel, Langkawi, Kedah, Malaysia, 29th May-1st June.
  10. Yusif, E. and Haddad, R., 2013. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus. 2(1), 398.
  11. Devlieghere, F., Vermeulen, A. and Debevere, J., 2004. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food microbiology. 21, 703-714.
  12. Griffine j. l. chemistry and technology of biodegradable polymer, chapman and hall. 1995, London.
  13. Hardenburg, R.E. 1967. Wax and related coatings for horticultural products. A bibliography. Agricultural Research Service Bulletin 51-15.
  14. Arvanitoyannis, I., Psomiadou, E., Biliaderis, C.G., Ogawa, H., Kawasaki, N. and Nakayama, A., 1997. Biodegradable films made from low density polyethylene, ethylene acrylic acid, polycaprolactone and wheat starch for food packaging applications. Starch Journal. 49, 306-322.
  15. Gomes, L.B., Klein, J.M., Brandalise, R.N., Zeni, M., Zoppas, B.C. and Coulon grisa, A.M., 2014. Study of oxo-biodegradable polyethylene degradation in simulated soil. Materials Research. 17, 121-126.
  16. Rutkowska, M. Heimowska, A. Krasowska, K. and Janik, H., 2002. Biodegradability of polyethylene starch blends in sea water. Polish Journal of Environmental Studies. 11, 267-274.
  17. Nwe, N., Furuike, T. and Tamura, H., 2009. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri. Materials. 2(2), 374-398.
  18. Shelma, R., Willy, P. and Sharma, C.P., 2008. Chitin nanofiber reinforced thin chitosan films for wound healing application. Trends Biomater Artif Organs. 22, 111-115.
  19. Tharanathan, R.N., 2003. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends in Food Science & Technology. 14, 71-78.
  20. Bartniki-Garcia, S., 1968. Cell wall chemistry. Annual review of microbiology. 22, 87–108.
  21. Liu, W., Wang, Y. and Sun, Z., 2003.Effects of Polyethylene-Grafted Maleic Anhydride (PE-g- MA) on Thermal Properties, Morphology, and Tensile Properties of Low-Density Polyethylene (LDPE) and Corn Starch Blends. Journal of Applied Polymer Science. 88, 2904.
  22. Ikada, Y. and Tsuji, H., 2000. Biodegradable polyesters for medical and ecological Applications. Macromolecular Rapid Communications. 21, 117-132.