بهینه سازی مسیرخطوط انتقال نفت با بکارگیری پارامترهای مکانی و روش های تصمیم گیری چند معیاره در GIS

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه سنجش از دور و GIS ،مرکز مطالعات سنجش از دور و GIS ،دانشگاه شهید بهشتی، تهران، ایران

چکیده

سابقه و هدف:
با توجه به وسعت و فواصل زیاد بین قطب‌های تولید و مصرف در کشور، توسعه زیرساخت‌های خطی به عنوان ضرورتی حیاتی مطرح می‌باشد. از آنجایی که در مسئله مسیریابی عوامل و معیارهای متعددی درگیر بوده که اغلب با یکدیگر ناسازگار بوده و برای گروه‌های تصمیم‌گیری در این زمینه مشکلاتی ایجاد می‌کنند و اغلب فرآیند مسیریابی را به تاخیر می‌اندازند، به همین خاطر بهره‌گیری از روش‌های نوین نظیر سامانه اطلاعات مکانی برای بهینه‌سازی فرآیند مسیریابی خطوط انتقال نفت می‌تواند منجر به حل بسیاری از مسائل پیچیده‌ای بشود که در تصمیم‌گیری با آن مواجه هستند.
مواد و روش‌ها:
هدف از این پژوهش بهینه سازی مسیر خطوط انتقال نفت از چاه حفاری شده به پالایشگاه با استفاده از سناریوهای مختلف با در نظر گرفتن ریسک پذیری و ریسک گریزی می باشد. ابتدا مهمترین معیارهای مکانی نظیر، زمین شناسی، پوشش کاربری، شیب طولی، مدل رقومی ارتفاع، معدن، گسل، رودخانه و آبراهه که در استخراج مسیر بهینه و هزینه احداث و اثرات متقابل آن با محیط اطراف موثر هستند، جمع‌آوری و با استفاده از توابع خطی وزنی کاهشی و افزایشی استاندارد سازی و آماده سازی شدند. سپس برای وزندهی به پارامترهای مورد نظر از روش تحلیل سلسله مراتبی که یکی از روش های دانش بنیان می باشد، استفاده شد. جهت تلفیق پارامترهای مکانی از عملگرهای روش میانگین مرتب شده وزنی و برای یافتن مسیر بهینه بین موقعیت چاه و پالایشگاه، از الگوریتم دایجسترا استفاده شد.
نتایج و بحث:
نتایج بدست آمده نشان می دهد که با افزایش مقدار α، مقدار هزینه، متوسط شیب و ارتفاع مسیر عبوری نفت افزایش می‌باشد. در سناریوهای با مقادیر کمتر از1 > α ارزش بیشتر به پیکسل‌های دارای مقدار عددی بالا داده می‌شود. بعبارت دیگر با افزایش مقدار α و کاهش درجه خوش بینی،وزن‌های ترتیبی کوچکتر و کوچک‌تری به ارزش‌های بالای معیارها اختصاص پیدا می‌کند. در حالی که وزن‌های ترتیبی بزرگتر به مقادیر دارای ارزش عددی پایین در همان موقعیت اختصاص داده می‌شود.  به همین خاطر مقدار طول مسیر از سناریو All (AND)  به سمت سناریو At least one (OR) کاهش می یابد. به این دلیل که الگوریتم دایجسترا یک الگوریتم تک هدفه بوده و هدف آن استخراج مسیر با کمترین هزینه می‌باشد. زیرا در هر گام حرکت پیکسلی که دارای کم­ترین هزینه تجمعی باشد را به عنوان جهت حرکت انتخاب می کند و مقدار طول مسیر را در نظر نمی‌گیرد که همین مورد یکی از مهم‌ترین عیوب الگوریتم می‌باشد.
 نتیجه گیری:
با مقایسه بین مسیر موجود و مسیرهای بدست آمده از الگوریتم دایجسترا در سناریوهای متفاوت برا اساس چهار فاکتور طول، هزینه، متوسط شیب و متوسط ارتفاع مسیر استخراج شده در سناریوهای Almost All ، Most و Half   (WLC) از نظر کلیه فاکتورها و معیارهای فنی- اقتصادی و زیست‌محیطی در شرایط بسیار مناسب‌تری قرار دارند. سناریوهای دیگر در برخی از فاکتورها نتایج بهتری نسبت به مسیر موجود ایجاد کرده‌اند. با ارائه نتایج گوناگون با سطح ریسک و جبران پذیری این روش از انعطاف‌پذیری بالایی در برآورد ساختن نیازها و اولویت تصمیم گیران در حوزه صنعت نفت برای طراحی بهینه خطوط انتقال برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Oil pipeline route optimization using multi-criteria analysis in GIS

نویسندگان [English]

  • shahram Mohammadi
  • Ali Akbar Matkan
  • Seyed Hossain Pourali
  • Babak Mirbagheri
  • Parvin Ahmadpour
Department of Remote Sensing and GIS, Remote Sensing and GIS Research Institute, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

Introduction:
According to distribution requirements and the broad distance between production and consumption centres in Iran, linear infrastructure development plays an important role and should be considered as a vital necessity. Routing problems include many factors which are often incompatible with each other and incompatibility amongst parameters causes significant delays in the process of routing. Hence, it is of interest that use of the new utilities in Geographic Information Systems (GIS) to optimize the routing process can resolve the difficulties faced in decision-making steps.
Material and methods:
This study aims at optimizing oil pipeline routes from wells drilled to the refinery by using different scenarios and to consider is ORness and ANDness. In the beginning preparation stage all necessary spatial data Like, Geology, land cover, slope, Dem, Fault, Main, River, stream which are required to find the optimal route for establishment of oil transmission line have been collected than Standardization and Preparation by  using reducing and Increasing linear weighting function. AHP process has been hired in order to find spatial weight of each parameter’s effectiveness in terms of cost of establishment and oil line interaction with its surrounding environment. Ordered weighted average (OWA) method has been applied to integrate spatial data and achieve the result, cost layer.  Dijkstra's algorithm has then been used to find the optimal route between the location of wells and refineries.
Results and discussion:
The results show that with increase in the value of α, the amount of cost, average slope and height of the oil transit route increase. In scenarios with, higher values are given to high-value pixels. While higher order weights are assigned to values with a lower numerical value in the same position. Therefore, the length of the route from the All (AND) scenario to the At least one (OR) scenario decreases. Because the Dijkstra's algorithm is a single-objective algorithm and aims at extracting the path with the least cost. Because at every move, Choose a pixel with the lowest Accumulative cost as the direction of motion and do not pay attention to the length of the route.
Conclusion
:  By comparing the existing route and the paths obtained from the Dijkstra's algorithm in different scenarios based on the factors of length, cost, mean slope and height of the route extracted In Almost All, Most, and Half (WLC) scenarios, are better than the other options in terms of techno-economic and environmental conditions in study area. Other scenarios have produced better results than some of the existing ones in some of the factors. Providing Various Results, With ORness and tradeoff this method has great flexibility in estimating the needs and priority of decision makers in the field of petroleum industry to design optimal transmission lines.

کلیدواژه‌ها [English]

  • Routing
  • Geographic Information Systems (GIS)
  • Dijkstra's algorithm
  • Analytical Hierarchy Process (AHP)
  • Ordered Weighted Average (OWA)
  1. Ahmadi, S., Ebadi, H., Zeoj, M. V., 2008. A new method for path finding of power transmission lines in geospatial information system using raster networks and minimum of mean algorithm. World Applied Sciences Journal, 3(2), 269-277.
  2. Albert, P., 2004. Finding minimal cost paths in raster geographic information system map representations, genetic algorithms, simulated annealing and tabu search. Phd Thesis, Kent State University College of Business.
  3. Antikainen, H., 2013. Using the Hierarchical Pathfinding A* Algorithm in GIS to Find Paths through Rasters with Nonuniform Traversal Cost. ISPRS International Journal of Geo-Information, , 2(4), 996.
  4. Bagli, S., Geneletti, D. and Orsi, F., 2011. Routeing of power lines through least-cost path analysis and multicriteria evaluation to minimise environmental impacts. Environmental Impact Assessment Review, 31(3), 234-239.
  5. Boroushaki, S., Malczewski, J.2010. Using the fuzzy majority approach for GIS-based multicriteria group decision-making. International Journal Computers & Geosciences 36, 302–312.
  6. Dean, D. J., 2011.Optimal routefinding with unlimited possible directions of movement. Transactions in GIS, 15(1), 87-107.
  7. Dijkstra, E. W., 1959. A note on two problems in connexion with graphs. Numerischemathematik, 1(1), 269-271.
  8. Eldrandaly, K. A., Hassan, M. M., AbdelAziz, N.M., 2015. A Modified Artificial Bee Colony Algorithm for Solving Least-Cost Path Problem in Raster GIS. Appl. Math, 9(1), 147-154.
  9. Gonçalves, A. B., 2010. An extension of GIS-based least-cost path modelling to the location of wide Paths. International Journal of Geographical Information Science, 24(7), 983-996.
  10. Iqbal, M., Sattar, F., and Nawaz, M., 2006. Planning a Least Cost Gas Pipeline Route A GIS & SDSS Integration Approach. Paper presented at the Advances in Space Technologies,International Conference Turkey.
  11. Kruusmaa, M and Willemson, J. 2003. Covering the path space: a casebase analysis for mobile robot path planning. Knowledge-Based Systems, 16(5), 235-242.
  12. Li, X., He, J. and Liu, X. 2009. Ant intelligence for solving optimal path‐covering problems with multi‐objectives. International Journal of Geographical Information Science, 23(7), 839-857.
  13. Malczewski, J., 1999. GIS and multicriteria decision analysis: John Wiley & Sons.
  14. Malczewski, J., 2006a. GIS-based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science 20 (7), 703–726.
  15. Malczewski, J., and Rinner, C., 2010. Multicriteria Decision Analysis in Geographic Information Science: Springer.
  16. Malczewski, J., Chapman, T., Flegel, C., Walters, D., Shrubsole, D. and Healy, M.A., 2003. GIS-multicriteria evaluation with ordered weighted averaging (OWA): case study of developing watershed management strategies. Environ. Plann. A 35 (10), 1769–1784.
  17. Matkan, A. A., Pourali, S. H., Mirbagheri, B. and Mohammadi, Sh., 2015. Optimal Routing Using Intelligent Algorithms in GIS, The First National Conference of Fire and urban safety, Theran, Iran.
  18. Meng Y., Malczewski J., and Boroushaki S., 2011. A GIS-based multicriteria decision analysis approach for mapping accessibility patterns of housing development sites: a case study in canmore, Alberta, Geo. Inf. Sys. 3: 50-61.
  19. Saaty, T.L., 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York, NY, 437 pp.
  20. Saaty,T.L. and L.G.,Vargas. 1991. Prediction, Projection and Forecasting. Kluwer Academic Publishers, Dordrecht, 251 pp.
  21. Saha, A. K., 2005. GIS‐based route planning in landslide‐prone areas”, International Journal of Geographical Information Science, 19(10), 1149-1175.
  22. Stahl, C. W., 2005. Accumulated surfaces & least-cost paths: GIS modeling for autonomous ground vehicle (AGV) navigation. Msc Thesis, aculty of the Virginia Polytechnic Institute and State University, American.
  23. Umashankar, S., 2014.Optimization on Shortest Path Finding For Undergroungd Cable Transmission Lines Routing Using GIS. Journal of Theoretical & Applied Information Technology, 65(3), 2014.
  24. Wagner, E.D. 2002. Public key infrastructure (PKI) and virtual private network (VPN) compared using a utility function and the analytic hierarchy process (AHP). M.Sc. Thesis,Virginia Polytechnic Institute and State University, 50pp.
  25. Yager, R. R. 1988. On ordered weighted averaging aggregation operators in multicriteria decision making. Systems, Man and Cybernetics, IEEE Transactions on 18(1): 183-190.
  26. Yager, R. R. 1988. On ordered weighted averaging aggregation operators in multicriteria decision making. Systems, Man and Cybernetics, IEEE Transactions on 18(1): 183-190.
  27. Yager, R.R. and Filev, D.P., 1999. Induced ordered weighted averaging operators. IEEE Transactions on Systems, Man, and Cybernetics- Part B 29, 141–150.
  28. Yu, C., Lee, J., Munro-Stasiuk, M. J., 2003. Extensions to least-cost path algorithms for roadway planning. International Journal of Geographical Information Science, 17(4), 361-375.