اثر بالقوه تغییرات اقلیمی بر توزیع نیوت کوهستانی خال زرد (Neurergus derjugini (Nesterov, 1916

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زیست شناسی، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران

چکیده

سابقه و هدف: تغییر اقلیم یکی از بزرگترین تهدیدها برای تنوع زیستی است و می­تواند منجر به تغییر توزیع گونه­ ها و افزایش خطر انقراض جمعیت ­هایی شود که قادر به سازگاری با محیط ­های جدید و یا جابجایی به زیستگاه ­های مناسب نیستند. در مطالعه حاضر، مطلوبیت زیستگاه برای نیوت کوهستانی خالزرد (Neurergus derjugini) با هدف شناسایی زیستگاه­ های مطلوب فعلی، پیش ­بینی گسترش یا انقباض محدوده توزیع گونه تحت تأثیر سناریوهای اقلیمی آینده و تعیین اصلی­ترین متغیرهای اقلیمی تأثیرگذار مدل­سازی گردید.
مواد و روش‌ها: گونه مورد مطالعه تاکنون از 57 نهر، چشمه و آبراه ­های تولید مثلی در محدوده کوهستان زاگرس در غرب ایران و شرق عراق براساس مندرجات در مطبوعات علمی گزارش شده است. در پژوهش حاضر توزیع گونه با استفاده از روش بیشینه آنتروپی[i] برای زمان حال و آینده (2050 و2070) تحت دو سناریوی خفیف (RCP2.6) و شدید (RCP8.5) مورد بررسی قرار گرفت.
نتایج و بحث: براساس نتایج به ­دست آمده میزان بارش در مرطوب­ترین دوره (BIO13)، بیشترین درصد مشارکت برای پیش ­بینی توزیع گونه را نشان داد. مقایسه وسعت منطقه ­های مطلوب در شرایط کنونی و تحت شرایط اقلیمی آینده نشان می ­دهد که مساحت زیستگاه ­های مطلوب برای نیوت خالزرد تحت سناریوی خفیف(RCP2.6)  در سال 2070 کاهش چشم­گیری نخواهد داشت و حتی در سال 2050 افزایش مساحت مشاهده گردید. در حالیکه مساحت زیستگاه­های مطلوب در سال 2070 تحت سناریوی شدید(RCP8.5)  کاهش قابل توجهی (بیش از 50 درصد) را نشان داد.  نتایج مدل از این فرضیه پشتیبانی می­ کند که با توجه به تغییرات اقلیمی آینده چه­ بسا محدوده توزیع گونه در پناهگاه­ های واقع در مرکز و جنوب محدوده توزیع با حرکت به سمت ارتفاعات بالاتر حفظ خواهد شد.
نتیجه‌گیری: یافته­ های به­ دست آمده از مطالعه جاری، از این فرضیه که پناهگاه­های اقلیمی زاگرس در حفاظت از جمعیت­ های منزوی و همچنین زیستگاه ­های مناسب مورد نیاز آن­ها طی دوره تغییرات اقلیمی نقش برجسته ­ای دارد، پشتیبانی می­ کند.

کلیدواژه‌ها


عنوان مقاله [English]

Potential impacts of climate change on the distribution of the Yellow-spotted mountain newt Neurergus derjugini (Nesterov, 1916)

نویسندگان [English]

  • Maryam Malekoutian
  • Mozafar Sharifi
  • Somaye Vaissi
Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
چکیده [English]

Introduction: Climate change is recognized as one of the largest threats to biodiversity and is expected to result in shifting species distributions and increasing extinction risk of populations that are unable to adapt or relocate to suitable habitats. In the present study, habitat suitability of the yellow-spotted mountain newt was modeled to identify the current suitable habitats, to predict the expansion or contraction of the distribution of the species under future climate change scenarios, and to determine the main environmental variables.
Material and methods: The studied species inhabit 57 highland streams of the Zagros Mountain range in western Iran and eastern Iraq. In the present study, species distributions were examined using the maximum entropy model (MaxEnt) for the current and the future (2050 and 2070) climate projection under two optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios.
Results and discussion: Based on the results, precipitation of the coldest quarter (BIO13) was the most percent of contribution to predicting species distribution. Comparison of suitable habitat areas in the current and future climate conditions showed that suitable habitats area for the species will not significantly decrease under the optimistic (RCP2.6) scenario in 2070 and an increase was also observed in 2050. Although, a reduction in suitable habitats area (more than 50%) was observed in 2070 under pessimistic (RCP8.5) scenarios. The results of the model supported the hypothesis that due to future climate change, the species distribution range is likely to be conserved in the refugia located in the center and south of the distribution range and by shifting to higher altitudes.
Conclusion: Results obtained from the current study supported the hypothesis that the Zagros climatic refugia play an important role in conserving populations as well as habitats suitable for the Yellow-spotted mountain newtduring climate change.
 
 

کلیدواژه‌ها [English]

  • MaxEnt
  • Neurergus derjugini
  • Climate change
  • Modeling
  • Climatic variables
Abbasian, M., Moghim, S. and Abrishamchi, A., 2019. Performance of the general circulation models in simulating temperature and precipitation over Iran. Theoretical and Applied Climatology. 135, 1465-1483.
Afroosheh, M., Akmali, V., Esmaili, S. and Sharifi, M ., 2016 . Distribution and abundance of the endangered yellow spotted mountain newt Neurergus microspilotus (Caudata: Salamandridae) in western Iran. Herpetological Conservation and Biology. 11, 52-60 .
Afroosheh, M., Rödder, D., Mikulicek, P., Akmali, V., Vaissi, S., Fleck, J., Schneider, W. and Sharifi, M., 2019. Mitochondrial DNA variation and Quaternary range dynamics in the endangered Yellow Spotted Mountain Newt, Neurergus derjugini (Caudata, Salamandridae). Journal of Zoological Systematics and Evolutionary Research. 57, 580-590.
Ahmadzadeh, F., Carretero, M.A., Rödder, D., Harris, D.J., Freitas, S.N., Perera, A. and Böhme, W., 2013a. Inferring the effects of past climate fluctuations on the distribution pattern of Iranolacerta (Reptilia, Lacertidae): Evidence from mitochondrial DNA and species distribution models. Zoologischer Anzeiger-A Journal of Comparative Zoology. 252, 141-148 .
Ahmadzadeh, F., Flecks, M., Rödder, D., Böhme, W., Ilgaz, Ç., Harris, D.J., Engler, J.O., Üzüm, N. and Carretero, M. A., 2013b. Multiple dispersal out of Anatolia: biogeography and evolution of oriental green lizards. Biological Journal of the Linnean Society. 110, 398-408.
Ahsani, N., Kaboli, M., Rastegar-Pouyani, E., Karami, M. and Kamangar, B.B., 2018. Habitat suitability prediction for Salamandra infraimmaculata (Caudata: Amphibia) in western Iran based on species distribution modeling. Journal of Asia-Pacific Biodiversity. 11, 203-205 .
Al-Sheikhly, O., Iyad, A., Rastegar-Pouyani, N. and Browne, R., 2013. New localities of the Kurdistan newt Neurergus microspilotus and Lake Urmia newt Neurergus crocatus (Caudata: Salamandridae) in Iraq. Amphibian and Reptile Conservation. 6, 42-49.
Ashrafzadeh, M.R., Naghipour, A.A., Haidarian, M., Kusza, S. and Pilliod, D.S., 2019a. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation. 19, e00637 .
Ashrafzadeh, M.R., Naghipour, A.A., Haidarian, M. and Khorozyan, I., 2019b. Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research. 64(1), 39-51.
Barabanov, A. and Litvinchuk, S., 2015. A new record of the Kurdistan Newt (Neurergus Derjugini) in Iran and potential distribution modeling for the species. Russian Journal of Herpetology. 22.
Barrett, K., Nibbelink, N.P. and Maerz, J.C., 2014. Identifying priority species and conservation opportunities under future climate scenarios: amphibians in a biodiversity hotspot. Journal of Fish and Wildlife Management. 5, 282-297 .
Borzée, A., Andersen, D., Groffen, J., Kim, H.-T., Bae, Y. and Jang, Y., 2019. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander :Karsenia koreana. Scientific Reports. 9, 1-9.
Cemal Varol, T., Koyun, M. and Çiçek, K., 2016. Predicting the current and future potential distributions of Anatolia Newt, Neurergus strauchii (Steindachner, 1887), with a new record from Elazığ (Eastern Anatolia, Turkey). Biharean Biologist. 10, 104-108.
Daneshvar, M.R.M., Ebrahimi, M. and Nejadsoleymani, H., 2019. An overview of climate change in Iran: facts and statistics. Environmental Systems Research. 8, 7 .
Dervo, B.K., Bærum, K.M., Skurdal, J. and Museth ,J., 2016. Effects of temperature and precipitation on breeding migrations of amphibian species in southeastern Norway. Scientifica. 4, 1-8.
Dianat, M., Darvish, J., Cornette, R., Aliabadian, M. and Nicolas, V., 2017. Evolutionary history of the Persian Jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. Journal of Zoological Systematics and Evolutionary Research. 55, 29-45 .
Dobrowski, S.Z. 2011., A climatic basis for microrefugia: the influence of terrain on climate .
Global Change Biology. 17, 1022-1035 .
Ebrahimi, A., Farashi, A. and Rashki, A., 2017. Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environmental Earth Sciences. 76, 697 .
Ebrahimi, A., Sardari, P., Safavian, S., Jafarzade, Z., Bashghareh, S. and Khavari, Z., 2019. Climate change effects on species of Bovidae family in Iran. Environmental Earth Sciences, 78, 186.
Elith, J.H., Graham, C.P., Anderson, R., Dudík, M., Ferrier, S., Guisan, A.J., Hijmans, R., Huettmann, F.R., Leathwick, J. and Lehmann, A., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29, 129-151 .
Fielding, A.H. and Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation. 38-49 .
Garcia, R.A., Burgess, N.D., Cabeza, M., Rahbek, C. and Araújo, M.B., 2012. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change
Biology.18, 1253-1269.
Giovanelli, J.G., De Siqueira, M.F., Haddad, C.F. and Alexandrino, J., 2010. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modelling. 221, 215-224 .
Grant, E. H.C., Miller, D.A., Schmidt, B.R., Adams, M.J., Amburgey, S.M., Chambert, T., Cruickshank, S.S., Fisher, R.N., Green, D.M. and Hossack, B.R., 2016. Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines. Scientific Reports.6, 1-9 .
Greenberg, C., Zarnoch, S. and Austin, J., 2018. Long term amphibian monitoring at wetlands lacks power to detect population trends. Biological Conservation. 228, 120-131 .
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society. 25, 1965-1978 .
Huey, R.B. and Tewksbury, J.J., 2009. Can behavior douse the fire of climate warming? Proceedings of the National Academy of Sciences. 106, 3647-3648.
IEA 2010. World energy outlook, International Energy Agency, Paris .
Javanbakht, H., Ihlow, F., Jablonski, D., Široký, P., Fritz, U., Rödder, D., Sharifi, M. and Mikulíček, P., 2017. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biological Journal of the Linnean Society. 121, 627-640.
Jowkar, H., Ostrowski, S., Tahbaz, M. And Zahler, P., 2016. The conservation of biodiversity in Iran: threats, challenges and hopes. Iranian Studies. 49, 1065-1077 .
Kafash, A., Yousefi, M. and Ahmadi, M., 2013. Predicting the impacts of climate change on the desert dwelling reptiles of Iran (Case study Saara loricata). 3th International conference on Environmental Planning and Management, 29th-30th October, Tehran, Iran.
Kafash, A. and Yousefi, M., 2017. Negative effects of the future climate change on Mountain lacerta in Iran. Journal Of Natural Environment (Iranian Journal Of Natural Resources). 70, 149-160.
Keppel, G., Van Niel, K.P., Wardell‐Johnson, G.W., Yates, C.J., Byrne, M., Mucina, L., Schut, A.G., Hopper, S.D. and Franklin, S.E., 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography. 21, 393-404 .
Khalyani, A.H., Mayer, A.L., Falkowski, M.J. and Muralidharan, D., 2013. Deforestation and landscape structure changes related to socioeconomic dynamics and climate change in Zagros forests. Journal of Land Use Science. 8, 321-340.
Mahdavi, T., Shams-Esfandabad, B., Toranjzar, H., Abdi, N. and Ahmadi, A., 2020. Potential impact of climate change on the distribution of the Eurasian Lynx (Lynx lynx) in Iran (Mammalia: Felidae). Zoology in the Middle East. 66, 107-117 .
Malekoutian, M., Sharifi, M. and Vaissi, S., 2020. Mitochondrial DNA sequence analysis reveals multiple Pleistocene glacial refugia for the Yellow‐spotted mountain newt, Neurergus derjugini (Caudata: Salamandridae) in the mid‐Zagros range in Iran and Iraq. Ecology and Evolution. 10, 2661-2676 .
Masoompour, S.J., Miri, M. and Porkamar, F., 2018. Assessment of CMIP5 climate models with observed precipitation in Iran. Geophysics. 11, 40-53.
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C., Frieler, K., Knutti, R., Frame, D.J. and Allen, M.R., 2009. Greenhouse-gas emission targets for limiting global warming to 2 C. Nature. 458, 1158-1162 .
Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T., Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B., Riahi, K. and Thomson, A.G.J.M.V., 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change. 109(1-2), 213.
Milanovich, J.R., Peterman, W.E., Nibbelink, N.P. and Maerz, J.C., 2010. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change. PloS One. 5, e12189.
Mohammadi, S., Ebrahimi, E., Moghadam, M.S. and Bosso, L., 2019. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics. 52, 7-13.
Morelli, T.L., Barrows, C.W., Ramirez, A.R., Cartwright, J.M., Ackerly, D.D., Eaves, T.D., Ebersole, J.L., Krawchuk, M.A., Letcher, B.H. and Mahalovich, M.F., 2020. Climate‐change refugia: biodiversity in the slow lane. Frontiers in Ecology and the Environment. 18, 228-234 .
Morovati, M., kaboli, M., Panahandeh, M., Sarbaz, M. and Ahmdian, S., 2019. Habitat modeling of Asian leopard (Acinonyx jubatus venaticus) under the Impact of Climate Change in Iran Using MAXENT Software. Animal Environment . 9(1), 13-20.
Najafimajd, E. and Kaya, U., 2010. A newly found locality for the critically endangered Yellow Spotted Newt, Neurergus microspilotus (Nesterov, 1917) nourishes hope for its conservation: (Salamandridae: Caudata). Zoology in the Middle East. 51, 51-56 .
Ochoa-Ochoa, L.M., Rodríguez, P., Mora, F., Flores-Villela, O. and Whittaker, R.J., 2012. Climate change and amphibian diversity patterns in Mexico. Biological Conservation. 150, 94-102 .
Parra‐Olea, G., Martínez‐Meyer, E. and De León, G.P.P., 2005. Forecasting climate change effects on Salamander distribution in the highlands of central Mexico 1. Biotropica: The Journal of Biology and Conservation. 37, 202-208 .
Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190, 231-259 .
Pilliod, D.S., Arkle, R.S., Robertson, J.M., Murphy, M.A. and Funk, W.C., 2015. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide‐ranging frog species in an arid landscape. Ecology and Evolution. 5, 3979-3994 .
Rajaei Sh.H., Rödder, D., Weigand, A.M., Dambach, J., Raupach, M.J. and Wägele, J.W., (2013). Quaternary refugia in southwestern Iran: Insights from two sympatric moth species (Insecta, Lepidoptera).Organisms Diversity and Evolution. 13, 409–423.
Rastegar-Pouyani, N., Mirani, R., Bahmani, Z., Karamiani, R., Takesh, M. and Browne, R. 2015. Conservation status of the Kurdistan newt Neurergus microspilotus in Kermanshah and Kurdistan provinces, Iran. Amphibian and Reptile Conservation. 9, 36-41.
Rastegar-Pouyani, N., Takesh, M., Fattahi, A., Sadeghi, M., Khorshidi, F. and Browne, R., 2013. Ecology of Kurdistan newt (Neurergus microspilotus: Salamandridae): Population and conservation with an appraisal of the potential impact of urbanization. Amphibian and Reptile Conservation. 6(4), 30-35 .
Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N. and Seguin, B.,
2008.Attributing physical and biological impacts to anthropogenic climate change. Nature. 453, 353-357.
Sahlean, T.C., Gherghel, I., Papeş, M., Strugariu, A. and Zamfirescu, Ş.R., 2014. Refining climate change projections for organisms with low dispersal abilities: a case study of the Caspian whip snake. PloS One. 9, e91994 .
Scheffers, B.R., Edwards, D.P., Diesmos, A., Williams, S.E. and Evans, T.A., 2014. Microhabitats reduce animal's exposure to climate extremes. Global Change Biology. 20, 495-503 .
Schloss, C.A., Nuñez, T.A. and Lawler, J.J., 2012. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences. 109, 8606-8611.
Segelbacher, G., Cushman, S.A., Epperson, B.K., Fortin, M.-J., Francois, O., Hardy, O. J., Holderegger, R., Taberlet, P., Waits, L. P. and Manel, S., 2010. Applications of landscape genetics in conservation biology: concepts and challenges. Conservation genetics. 11, 375-385 .
Shahabi, S., Akmali, V. and Sharifi, M., 2017 .
Taxonomic evaluation of the Greater Horseshoe Bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran inferred from the mitochondrial D-Loop gene. Zoological Science. 34, 361-367.
Sharifi, M. and Assadian, S., 2004. Distribution and conservation status of Neurergus microspilotus (Caudata: Salamandridae) in western Iran. Asiatic Herpetological Research. 10, 224-229.
Sharifi, M., Shafiei Bafti, S., Papenfuss, T., Anderson, S., Kuzmin, S. and Rastegar-Pouyani, N., 2009. Neurergus microspilotus (errata version published in 2016). The Iucn Red List of threatened species 2009: E. T59451a86642381 .
Sharifi, M., Karami, P., Akmali, V., Afroosheh, M. and Vaissi, S., 2017. Modeling geographic distribution for the endangered yellow spotted mountain newt, Neurergus microspilotus (Amphibia: Salamandridae) in Iran and Iraq. Herpetological Conservation and Biology. 12(2), 488-497.
Stott, P.A., Gillett, N.P., Hegerl, G.C., Karoly, D.J., Stone, D.A., Zhang, X. and Zwiers, F., 2010. Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change. 1, 192-211.
Sutton, W.B., Barrett, K., Moody, A.T., Loftin, C.S., Demaynadier, P.G. and Nanjappa, P., 2015. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States. Forests. 6, 1-26.
Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science. 240, 1285-1293.
Vaghefi, S.A., Keykhai, M., Jahanbakhshi, F., Sheikholeslami, J., Ahmadi, A., Yang, H. and Abbaspour ,K.C., 2019. The future of extreme climate in Iran. Scientific Reports. 9, 1-11.
Vamberger, M., Stuckas, H., Vargas‐Ramírez, M., Kehlmaier, C., Ayaz, D., Aloufi, A.A., Lymberakis, P., Široký, P. and Fritz, U., 2017. Unexpected hybridization patterns in Near Eastern terrapins (Mauremys caspica, M. rivulata) indicate ancient gene flow across the Fertile Crescent. Zoologica Scripta. 46, 401-413.
Velo‐Antón, G., Parra, J., Parra‐Olea, G. and Zamudio, K., 2013. Tracking climate change in a dispersal‐limited species :Reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology. 22, 3261-3278.
Welsh Jr, H.H. and Hodgson, G.R., 2013. Woodland salamanders as metrics of forest ecosystem recovery: a case study from California's redwoods. Ecosphere. 4(5), 1-25
Worldclim, 2021. Available at https://www. worldclim.org.
Yousefi, M., Shabani, A.A. and Azarnivand, H., 2020. Reconstructing distribution of the Eastern Rock Nuthatch during the last glacial maximum and last interglacial. Avian Biology Research. 13, 3-9 .
Yousefkhani, S.S.H., Aliabadian, M., Rastegar-Pouyani, E. and Darvish, J., 2017. Predicting the impact of climate change on the distribution pattern of Agamura persica (Dumeril, 1856) (Squamata: Gekkonidae) in Iran. Belgian Journal of Zoology. 147.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T.Y., Shindo, E., Tsujino, H. and Deushi, M., 2012. A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance—. Journal of the Meteorological Society of Japan. 90, 23-64.
Zarei, F., Hosseini, S.N., Amini, S.S., Pezeshk, J., Soofi, M. and Esmaeili, H.R., 2017. A new locality of Kurdistan newt, Neurergus derjugini derjugini (Nesterov, 1916) represents a large population in Iran: Implication for conservation. Herpetology Notes.10, 611-614 .