ارزیابی انتشار گرد و غبار با استفاده از مدل شبکه عصبی مصنوعی شهرستان کاشان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آلودگی محیط زیست، دانشکده منابع طبیعی و محیط زیست ، واحد یزد، دانشگاه آزاد اسلامی ، یزد، ایرا ن

2 گروه سنجش از دور و GIS، دانشکده ژتومورفولوژی، واحد یزد، دانشگاه آزاد اسلامی ، یزد، ایرا ن

3 گروه اصلاح نباتات، دانشکد ه کشاورزی و اصلاح نباتات ، واحد یزد، دانشگاه آزاد اسلامی ، یزد، ایرا ن

چکیده

سابقه و هدف: امروزه پدیده‌های گردوغباری در ردیف مهم‌ترین مخاطرات محیطی قرارگرفته و سلامتی انسان و محیط زیست را با خطر جدی مواجه کرده است. گردو غبار در جو به عنوان یکی از آلاینده‌های هوا، آثار سوء و پیامدهای منفی گوناگونی دارد که از بین آن‌ها می‌توان به کاهش رشد و بازدهی محصولات کشاورزی، تشدید خسارات ناشی از بروز آفات و بیماری‌های گیاهی، افزایش تصادفات جاده ای به علت کاهش قدرت دید، لغو پروازها و خسارات مالی ناشی از آن، اقزایش هزینه درمان، تعطیلی واحدهای صنعتی، آلودگی منابع آب، افزایش فرسایش بناها، افت بازدهی سیستم‌های فتوولتایک خورشیدی به دلیل کدورت هوا اشاره کرد. بنابراین، به دلیل اهمیت موضوع گردوغبار و به منظور پیش بینی نحوه انتشار گرد و غباراز مدل شبکه عصبی مصنوعی استفاده شد. با استفاده از این مدل می‌توان اطلاعات مفید و مقرون به صرفه‌ای، جهت اجرای آتی استراتژی‌های کنترل آلودگی هوا و کاهش هزینه‌ها کسب نمود.
مواد و روش ­ها: برای مدلسازی پراکنش گرد و غبار با استفاده از مدل شبکه عصبی مصنوعی، آمار و اطلاعات هواشناسی ایستگاه سینوپتیک شهرستان کاشان که به صورت روزانه توسط اداره محیط زیست در سال 96 ثبت شده‌اند، استفاده گردید. داده ­های رطوبت، دما، سرعت باد و جهت باد به­ عنوان داده­ های ورودی برای مدلسازی بکار گرفته شد. فرآیند آموزش مدل با استفاده از تابع عضویت سیگموئیدی در محیط نرم افزار متلب انجام شد که خروجی اجرا مدل پیش بینی میزان ذرات معلق 5/2 میکرومتر بر مترمکعب است. به منظور ارزیابی صحت مدل اجرا شده، میزان ذرات معلق 5/2 حاصل شده با داده­ های واقعی نمونه برداری شده در محیط مقایسه شد. در مدل شبکه عصبی، تعداد نرون ها در لایه پنهان و تعداد دور یا ایپاک مناسب برای رسیدن به بهترین ساختار شبکه عصبی، با کمترین خطا برای هر مدل، با استفاده از روش سعی و خطا مشخص شد. تعداد نرون و ایپاک برای مدل در سال 2017 به ترتیب 15 و 37000 می‌باشد.
نتایج و بحث: نتایج صحت سنجی مدل که از مقایسه داده‌های واقعی با داده‌های شبیه سازی شده بدست آمده، نزدیک به 80 درصد می باشد. بررسی نمودار میانگین رگرسیون نشان می دهد که مقادیر پیش بینی شده حاصل از مدل به محور قطری نزدیکترند و پراکندگی نداشته و با مقادیر اندازه ­گیری شده فاصله و اختلاف چندانی ندارند. همچنین براساس نتایج روش رگرسیون گام به گام مشخص شد که از بین چهار متغییر استفاده شده برای مدلسازی رطوبت نسبی بیشترین تاثیر و اهمیت در مدلسازی انتشار گرد و غبار دارد.
نتیجه ­گیری: با توجه به صحت و نتایج حاصل می‌توان از این روش برای پیش بینی انتشار آلودگی هوا کاشان ناشی از ذرات معلق استفاده کرد.  به دلیل قابلیت بالای شبکه عصبی پرسپترون در پیش بینی میزان غلظت و نحوه انتشار گردوغبار، این مدل می‌تواند یک راه حل مناسب و سریع در پیش بینی میزان و انتشار گردوغبار و مدیریت آن باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of dust emission using artificial neural network model of Kashan city

نویسندگان [English]

  • Elham Pourmaafi Esfahani 1
  • Ali Almodaresi 2
  • Mohammad Mousaei Sanjerehei 3
  • Hamed Hghparast 1
1 Department of Environmental Pollution, Faculty of Natural Resources and Environment, Yazd Branch, Islamic Azad University, Yazd, Iran
2 Department of Remote Sensing and GIS, Facult of Gemorphology, Yazd Branch, Islamic Azad University, Yazd, Iran
3 Department of Plant Protection, Facult of Agriculture, Yazd Branch, Islamic Azad University, Yazd, Iran
چکیده [English]

Introduction: Today, dust phenomena are among the most important environmental hazards and pose a serious threat to human health and the environment. Dust in barley as one of the pollutants has various adverse effects and negative consequences, among which can be reduced growth and yield of agricultural products, intensification of damage caused by pests and plant diseases, increased road accidents due to reduced visibility, The cancellation of flights and the resulting financial losses, increased treatment costs, closure of industrial units, pollution of water resources, increased erosion of buildings, decreased efficiency of solar photovoltaic systems due to turbidity.
Objective: Therefore, due to the importance of dust and in order to predict how dust is spread, the artificial neural network model was used. This model can be useful and cost-effective information for future implementation of air pollution control strategies and cost reduction.
Material and methods: To model the dust distribution using artificial neural network model, statistics and meteorological information of Kashan synoptic station, which were recorded daily by the Environment Department in 1996, were used. The proposed neural network model has four input layers that include humidity, temperature, wind speed, wind direction and an output layer, the daily concentration of suspended particles is 2.5 micrometers per cubic meter. The model training process was performed using multilayer perceptron neural network and post-diffusion rule and using sigmoid membership function in Matleb software environment. In the neural network model, the number of neurons in the hidden layer and the appropriate number of rounds or IPAC to achieve the best neural network structure, with the least error for each model, were determined using trial and error. The number of neurons and apex for the model in 2017 is 15 and 37,000, respectively.
Results and discussion: The correlation coefficient of the model for predicting PM2.5 concentration is equal to 0.80 which is obtained by comparing real data with simulated data. The validation results of the model with real data are close to 80%, so the neural network model can be used to predict PM2.5 concentration. According to the average regression diagram, the predicted values obtained from the model are closer to the diagonal axis and have no dispersion. Also, based on the results of the step-by-step regression method, it was determined that among the four variables used for relative humidity modeling, it has the most impact and importance in dust emission modeling.
Conclusion: According to the accuracy and the results, this method can be used to predict the air pollution of Kashan caused by suspended particles. Due to the high capability of the perceptron neural network in predicting the concentration and distribution of dust, the application of this model can be a suitable and fast solution for predicting the amount and spread of dust.

کلیدواژه‌ها [English]

  • Modeling
  • Artificial neural network
  • Air pollution
  • Dust
  • Kashan
Ahmadi Massoud, N., Samadi Khadem, S. and Dargahi, A., 2013. Investigating the importance of green space in controlling and reducing urban air pollution, In Proceedings 3rd International Conference on Environmental Planning and Management, 26th-27th November, Tehran, Iran. p.108
Chouai, A., Laugier, S. and Richon, D., 2002. Modeling of thermodynamic properties using neural networks: Application to refrigerants. Fluid Phase Equilibria. 199(1-2), 53-62.‏
Hosseini Shahpariyan, N., Firozi, M. and Hosseini Kahnoj, S., 2020. Application of artificial neural network and regression model to predict the phenomenon of dust in the city of Ahvaz. Human and Environment. 18(3), 13-24. (In Persian with English abstract).
Huang, M., Peng, G., Zhang, J. and Zhang, S., 2006. Application of artificial neural networks to the prediction of dust storms. In Northwest China Journal of Global and Planetary Change. (52), 216-224.
Jamalizadeh Tajabadi, M.R., Moghadam Nia, A.R., Piri, J. and Ekhtesasi, M.R., 2010. Application of artificial neural networks in dust storm prediction (case study: Zabol city). Iranian Journal of Rangeland and Desert Research. 17(2), 205-220. (In Persian with English abstract).
Karimi, A., Hazavei, E. and Abolhassanim, M., 2015. Analysis of appropriate models for predicting air pollution with emphasis on neural network method, In Proceedings 1st International Conference on Natural Hazards and Environmental Crises, 13th-15th September, Ardebil, Iran. p.75.
Kaykhosravi, S.S., Nejad Korki, F. and Amin Tusi, M., 2020. Evaluation of the accuracy of artificial neural networks in predicting dust in Sabzevar Cement Factory. Quarterly Journal of Environmental Health Research. 5(1), 52-44. (In Persian with English abstract).
Kröse, B. and Smagt, P., 1996. Van D. An Introduction to Neural Networks. 8th ed. The University of Amsterdam,‏ Amsterdam, Netherland.
Krose, B., Krose, B., Vander, P. and Smagt, P., 1993. An Introduction to Neural Networks. 1-135.
Mohammad Asgari, H., Miravipour, D., Najafi, I. and Farhadi, S., 2020. Detection of dust phenomenon in southwestern Iran using BTD and NDDI indices and neural network. Geographical Information Quarterly. 28(111), 234-218. (In Persian with English abstract).
Nejadkoorki, F. and Baroutian, S. 2011. Forecasting extreme PM10 concentrations using artificial neural networks. International Journal Environmental Research. 6(1), 277-84.
Rostami Fassih, Z., Mesdaghinia, A.R., Nabizadeh Nodehi, R., Mahvi, A.H. and Hadi, M. 2016. Prediction of air quality index based on meteorological variables and self-correlated components using artificial neural network. Razi Journal of Medical Sciences. 22(137), 43-32. (In Persian with English abstract). 
Shahkooi, I. and Rahmani, T., 2020. Risk assessment of fine dust in northwestern Iran. Journal of Spatial Planning (Geography). 2, 58-80. (In Persian with English abstract).
Shahsvani, A., Ayar Ahmadi, M., Jafarzadeh Haghighi Fard, N., Naeem Abadi, A., Mahmoudian, M.H., Saleki, H., Solat, M.H., Soleimani, Z. and Nadafi, K., 2010. Effects of dust storms on health and environment. Journal of North Khorasan University of Medical Sciences Winter. 4, 56-45. (In Persian with English abstract).
Sobhani, B., Salahi, B. and Goldust, A. 2015. Study the dust and evaluation of its possibility prediction based on statistical methods and ANFIS model in Zabol university. Geography and Development. 13(38), 123-138. (In Persian with English abstract).
Taei Samiromi, S., Moradi, H., Khadagholi, M. and Ahmadi, M., 2013. Study of factors affecting dust phenomenon in west of Iran. Human and Environment. 11(27), 1-10. (In Persian with English abstract).
Tan, M., Li, X. and Xin, L., 2014. Intensity of dust storms in China from 1980 to 2007: A new definition, Atmospheric Environment, 215-222.
Torkashvand, M.G. and Kiani, M. 2015. Analysis of air pollution status due to climatic effects of dust and dust storms in the southern regions of Hamadan province. Environmental Science and Technology. 19(4), 17-14. (In Persian with English abstract).
Wong, M.S., Xiao, F., Nichol, J., Fung, J., Kim, J., Campbell, J. and Chan, P.W.  2015. A multi-scale hybrid neural network retrieval model for dust storm detection, a study in Asia. Atmospheric Research. 158, 89-106.
Xiao, F., Wong, M.S., Lee, K.H., Campbell, J.R. and Shea, Y.K., 2015. Retrieval of dust storm aerosols using an integrated neural network model. Computers & Geosciences. 85, 104-114.
Zarabi Asghar, M.J. and Abdollahi, A.A. 2020. Investigation and evaluation of fixed and mobile sources in air pollution in Isfahan. Geography. 26, 164-151. (In Persian with English abstract).