Aburas, M.M., Ho, Y.M., Ramli, M.F. and Ash’Aari, Z.H., 2016. The simulation and prediction of Spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation. 52, 380-389.
Al-shalabi, M., Billa, L., Pradhan, B., Mansor, S. and Al-Sharif, A.A., 2013. Modelling urban growth evolution and land-use changes using GIS-based cellular automata and SLEUTH models: the case of Sana'a metropolitan city, Yemen. Environmental Earth Sciences. 70(1), 425-437.
Alsharif, A.A. and Pradhan, B., 2014. Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing. 42(1), 149-163.
Anan, HS, 2019. Contribution to the paleontology, stratigraphy and paleo-biogeography of some diagnostic Pakistanian Paleogene foraminifer in the Middle East. Earth Sciences Pakistan . 3(1), 23-28.
Camara, M., Jamil, N.R.B., Abdullah, A.F.B. and Hashim, R.B., 2020. Integrating cellular automata Markov model to simulate future land-use change of a tropical basin. Global Journal of Environmental Science and Management. 6(3), 403-414.
Farajollahi, F., Asgari H., Ownagk, M., Mahboubi, M. and Salman Mahini, A., 2016. Monitoring and forecasting the trend of spatial and temporal changes in land use/cover (case study: Region Marava Tappeh, Golestan). Remote Sensing and GIS in Natural Resources . 6(4), 1-14. (In Persian with English abstract).
Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T. and Hokao, K., 2011. Modeling urban land-use change by the integration of cellular automaton and Markov model. Ecological Modelling . 222(20-22), 3761-3772. Hagen, A., 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science. 17(3), 235-249.
Hamad, R., Balzter, H. and Kolo, K., 2018. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability . 10(10), 3421.
Hathout, S., 2002. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of Environmental Management. 66(3), 229-238.
Kamusoko, C., Aniya, M., Adi, B. and Manjoro, M., 2009. Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography . 29(3), 435-447.
Khawaldah, H. A., Farhan, I. and Alzboun, N.M., 2020. Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model. Global Journal of Environmental Science and Management. 6(2), 215-232.
Landis, J.R. and Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics . 33(1), 159-174.
Mas, J.F., Kolb, M., Paegelow, M., Olmedo, M.T.C. and Houet, T., 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling and Software. 51, 94-111.
Mehrabi, A., Khabazi, M., Almodaresi, S.A., Nohesara, M. and Derakhshani, R., 2019. Land-use changes monitoring over 30 years and prediction of future changes using multi-temporal Landsat imagery and the land change modeler tools in Rafsanjan city (Iran). Sustainable Development of Mountain Territories . 11(1), 26-35.
Muller, M.R. and Middleton, J., 1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, and Canada. Landscape Ecology . 9(2), 151-157.
Omar, N. Q., Ahamad, M. S. S., Hussin, W. M. A. W., Samat, N., and Ahmad, S. Z. B., (2014). Markov CA, multi regression, and multiple decision making for modeling historical changes in Kirkuk City, Iraq. Indian Society of Remote Sensing. 42(1), 165-178.
Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J. and Deadman, P., 2003. Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers . 93(2), 314-337.
Qian, J., Zhou, Q. and Hou, Q., 2007. Comparison of pixel-based and object-oriented classification methods for extracting built-up areas in arid zone. In Proceedings Fifth Isprs Workshop on Updating Geo-spatial Databases with Imagery and the 5th Isprs Workshop on DMGISs, 28th-29th August, Urumchi, Xingjizng, China. P.163-171 .
Ruben, G.B., Zhang, K., Dong, Z., and Xia, J., 2020. Analysis and projection of land-use/land-cover dynamics through scenario-based simulations using the CA-Markov model: A case study in guanting reservoir basin, China. Sustainability . 12(9), 3747.
Rimal, B., Zhang, L., Keshtkar, H., Haack, B.N., Rijal, S. and Zhang, P., 2018. Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. International Journal of Geo-Information . 7(4), 154.
Rimal, B., Zhang, L., Keshtkar, H., Sun, X. and Rijal, S., 2018. Quantifying the spatiotemporal pattern of urban expansion and hazard and risk area identification in the Kaski District of Nepal. Land. 7(1), 37.
Shafiei Sabet, N., Shakiba A. and Mohammadi, A., 2019. Detection and prediction of land-use changes using the Ca-Markov model (case study: Damavand metropolitan area). Journal of Geographical Information. 28(1),1-16. (In Persian with English abstract).
Shen, S., Chen, L., Fan, C. and GAO, Y., 2019. Dynamic simulation of urban green space evolution based on Ca-Markov model-a case study of Hexi new town of Nanjing city, china. Applied Ecology and Environmental Research. 17(4), 8569-8581.
Stehman, SV. 2004. A critical evaluation of the normalized error matrix in map accuracy assessment. Photogrammetric Engineering and Remote Sensing . 70(6), 743-751.
Subedi, P., Subedi, K. and Thapa, B., 2013. Application of a hybrid cellular automaton–Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences . 1(6), 126-132.
Torrens, P.M., 2003. Automata-based models of urban systems. In: Longley, P. and Batty, M., (Eds.), Advanced Spatial Analysis. ESRI Press, Redlands, FL, pp. 61-79 .
White, R. and Engelen, G., 2000. High-resolution integrated modeling of the spatial dynamics of urban and regional systems. Computers, Environment, and Urban Systems. 24(5), 383-400.
Wolfram, S., 1983. Statistical mechanics of cellular automata. Reviews of Modern Physics .
55(3), 601-644.