1
گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت
2
گروه آبیاری و زهکشی، دانشکده کشاورزی، دانشگاه تربیت مدرس
چکیده
سابقه و هدف: تجمع عناصر سنگین در خاک در بسیاری از نقاط دنیا مشکلات زیستمحیطی فراوانی را بهوجود آوردهاند. غلظت زیاد این عناصر در خاک ممکن است به مقداری زیاد بهوسیله گیاه جذب شود و این مهمترین راه ورود عناصر سنگین به زنجیره غذایی انسان و دام و چرخههای بیولوژیک است. بنابراین بررسی چگونگی انباشت این عناصر به منظور جلوگیری از آلودگی خاک و زیستبوم ضروری است. در میان عناصر سنگین، کادمیم به دلیل تحرک بالا در سیستمهای بیولوژیک و توانایی تجمع درگیاهان بدون ایجاد هر گونه نشانههای قابلرؤیت بهعنوان یکی از خطرناکترین عناصر سنگین در نظر گرفته شده است. با توجه به اینکه کادمیم در خاکهای اسیدی در محدوده pH 5/4 تا 5/5 متحرک بوده و برنج نیز در خاکهای اسیدی بهترین رشد را دارد و نیز با توجه به نقش برنج در سلامت جامعه، این تحقیق با هدف بررسی آلودگی خاک شالیزارهای استان گیلان به کادمیم انجام شد.مواد و روشها: بدین منظور تعداد ١٠٠ نمونه خاک از عمق ٠-٢٠ سانتیمتری به طور تصادفی و با استفاده از دستگاه GPS پیش از کوددهی و کشت و پس از برداشت محصول از شالیزارهای مختلف استان تهیه شد. برای تجزیه خاک، نمونههای خاک برداشتشده پس از خشک شدن، از الک 2 میلیمتری عبور داده شد. غلظت کادمیم کل و نیز برخی ویژگیهای خاک شامل بافت خاک، هدایت الکتریکی، واکنش خاک، جرم ویژه ظاهری و حقیقی و ماده آلی خاک اندازهگیری شد. توزیع مکانی و پراکنش فلز سنگین کادمیم با استفاده از روشهای مختلف زمین آماری شامل IDW، Spline و Kriging در محیط GIS بررسی شد.نتایج و بحث: نتایج حاصل از تجزیههای فیزیکی و شیمیایی خاک نشان داد که متوسط pH خاکهای مورد آزمایش ٤٨/٦ و شوری عصاره اشباع ٥٩/١ دسیزیمنس بر متر بوده که این مقدار شوری برای کشت گیاه برنج مشکلی ایجاد نمیکند. درصد شن نمونههای خاک بین ٤ الی ٣٥، سیلت بین ٢٨ الی ٤٩ و رس بین ٣٩ الی ٦٥ درصد بوده که بدین ترتیب بافت خاکها در محدوده Clay Loam، Silty Clay و Clay بوده که خاکی نسبتاً سنگین تا سنگین و برای کشت گیاه برنج مناسب است. مقدار ماده آلی بهطور متوسط ٧٨/١ و دامنه تغییرات کادمیم کل خاک نیز پیش از کشت و پس از برداشت محصول به ترتیب با کمینه 65/0 و 97/1 و بیشینه 40/1 و 05/11 بود. از میان روشهای زمینآماری بررسیشده برای توزیع مکانی و پراکنش کادمیم روش کریجینگ معمولی با مدل کروی بهعنوان بهترین روش انتخاب شد.نتیجهگیری: بر اساس نتایج بهدستآمده بخشی از منطقه مورد بررسی پس از برداشت محصول طبق شاخص Kelly آلوده بوده که میتواند بیانگر تأثیر استفاده از کودهای شیمیایی و مدیریت غیراصولی اراضی باشد و باید استفاده از این کودها با احتیاط بیشتری انجام شود. نقشه حاصل میتواند برای بررسی و مدیریت استفاده صحیح کودهای شیمیایی برای حاصلخیزی زمینهای شالیزاری استفاده شود.
Alipour, N., Homaee, M., Asadi Kapourchal, S. and Mazhari, M., 2015. Assessing chenopodium album L. to tolerate and phytoextract lead from heavy metal contaminated soils. Environmental Sciences. 13, 105112. (In Persian with English abstract).
Amini, M., Afyuni, M., Khademi, H., Abbaspour, K.C. and Schulin, R., 2005. Mapping risk of cadmium and lead contamination to human health in soils of central Iran. Science of the Total Environment. 347, 64-77.
Asadi Kapourchal, S., Pazira, E. and Homaee, M., 2009. Assessing radish (raphanus sativus L.) potential for phytoremediation of lead- contaminated soils resulting from air pollution. Soil Plant and Environment Journal. 55, 202-206.
Asadi Kapourchal, S., eisazadeh, S. and Homaee, M., 2011. Phytoremediation of cadmium polluted soils resulting from use of phosphorus fertilizers. In Proceeding of European Biotechnology Thematic Network Association congress. 28th September, Istanbul, Turkey. p.S37.
Atanassov, I., 2007. New Bulgarian soil pollution standards. Bulgarian Journal of Agricultural Science. 14, 68-75.
Beyer, W.N., 1990. Evaluating soil contamination. Fish and Wildlife Service. U.S. Department of the Interior. Biological Report 90(2).
Campbell, J.B., 1978. Spatial Variation of sand content and pH within single contiguous delineation of two soil mapping units. Soil Science Society of America Journal. 42, 460-464.
Charter, R.A., Tabatabai, M.A. and Schafe, J.W. 1993. Metal contents of fertilizers marketed in Iowa. Communications in Soil Science and Plant Analysis. 24, 961-972.
Christensen, T.H. and Haung, P.M., 1999. Solid phase cadmium and the reaction of aqueous cadmium
with soil surfaces. In: McLaughlin, M.J. and Singh, B.R. (Eds.), Cadmium in Soils and Plants. Kluwer Academic Publishers, London, pp. 65-96.
Dalalian, M. and Homaee, M., 2011. Simulating of phytoremediation time of cadmium and copper spiked soils by Salvia sclarea. Water and Soil Science Journal. 20, 129-141. (In Persian with English abstract).
Davari, M. and Homaee, M., 2010. Modeling phytoremediation of Ni and Cd from contaminated soils using macroscopic transpiration reduction functions. Science and Technology of Agriculture and Natural Resources. Water and Soil science Journal. 14, 75-84. (In Persian with English abstract).
Davari, M. and Homaee, M., 2012. A new yield multiplicative model for simultaneous phytoextraction of Ni and Cd from contaminated soils. Water and Soil Journal. 25, 1333-1343. (In Persian with English abstract).
Dayani, M., Mohammadi, J. and Naderi, M., 2009. Geostatistical analysis of Pb, Zn and Cd concentration in soil of Sepahanshahr suburb (south of Esfahan). Journal of Water and Soil. 23, 67-76. (In Persian with English abstract).
Ebong, G.A., Akpan, M.M. and Mkpenie, V.N., 2008. Heavy metal contents of municipal and rural dumposite soils and rate of accumulation by Carica papaya and Talinum triangulare in Uyo, Nigeria. Journal of Chemistry. 5, 281-290.
Garavand, M., Ghasemi, H. and Hafezi Moghddas, N., 2013. Geochemical and environmental assessment of the heavy metals in the soils derived from the Gorgan schists. Scientific Quarterly Journal, Geosciences. 22, 35-47. (In Persian with English abstract).
Giorgio, S., Senesi, G., Baldassarre, A., Snesi, A. and Radina, B., 1999. Trace element inputs into soils by anthropogenic activities and implications for human
صدورا اسدی کپورچال و همکاران
پاییز ،3 فصلنامه علوم محیطی، دوره چهاردهم، شماره 143
health. Chemosphere. 39, 343-377.
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.
Goovaerts, P., 2000. Estimation or simulation of soil properties, An optimization problem with conflicting criteria. Geoderma. 97, 165–186.
Hajrasuliha, S., Baniabbassi, N., Metthey, J. and Nielsen, D.R., 1980. Spatial variability of soil sampling for salinity studies in southwest Iran. Irrigation Science. 1, 197-208.
Hani, A., Sinaei, N. and Gholami, A., 2014. Spatial Variability of heavy metals in the soils of Ahwaz using geostatistical methods. Environmental Science and Development. 5, 294-298.
Hasani Pak, A.A., 1998. Spatial Statistical (Geostatistic). University of Tehran publishing, Tehran, Iran.
Jafarnejadi, A.R., Homaee, M. and Sayyad, Gh.A. 2011. Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination Journal. 20, 93-99.
Jazaeri, M.S., Akhgar, A.R. and Sarcheshmehpour , M., 2015. Comparison of the native phosphate rock and imported triple superphosphate treated with sulfur and thiobacillus in transferring lead and cadmium into pistachio seedling. Journal of Soil Management and Sustainable Production. 5, 25-44. (In Persian with English abstract).
Juang, K.W., Lee, D.Y. and Ellsworth, T.R., 2001. Using rank-order geostatistics for special interpolation of highly skewed data in heavy metal contaminated site. Journal of Environmental Quality. 30, 894-903.
Kabata-Pendias, A. and Pendias, H., 2001. Trace elements in soils and plants, third ed. CRC Press, Boca Raton, London, New York.
Kasraeian, A., Karimian, N. and Ghafouri, V., 2014. Evaluation of spatial distribution of soil cadmium and cadmium hot points in a part of an arable lands in west of Shiraz in Fars province by kriging method. Journal of Water and Wastewater (Ab va Fazilab). 25, 44-50. (In Persian with English abstract).
Kelly Indices (former Creater London Council), 1980. Site investigation and materials problems, In Proceedings Conference on Reclamation of Contaminated Land, 22th-25th October, Eastbourne, England, (Society of the Chemical Industry).
Khodaverdiloo, H. and Homaee, M., 2008. Modeling
phytoremediation of soils polluted with cadmium and lead. Science and Technology of Agriculture and Natural Resources, Water and Soil Science Journal. 11, 417-426. (In Persian with English abstract).
Khodakarami, L., Soffianian, A., Mirghafari, N., Afyuni, M. and Golshahi, A., 2012. Concentration zoning of chromium, cobalt and nickel in the soils of three sub-basin of the Hamadan province using GIS technology and the geostatistics. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources). 15, 243-254.
Klute, A., 1986. Methods of Soil Analysis, part I, physical and Mineralogical Methods, Second edition, Soil Science Society of America INC, Wisconsia, USA.
Lado, L.R., Hengl, T. and Reuter, H.I., 2008. Heavy metal in European soils: A geostatistical analysis of the FOREGS Geochemical database. Geoderma. 148,189-199.
Mahdian, M.H., Matin, M., Ghiasi, N.gh., Akhbari, T. and Mokhtari Hesari, A., 2001. Investigation of spatial interpolation methods to determine the minimum error of estimation: Case study, temperature and evaporation. Journal of Agricultural Engineering Research. 2, 63-78. (In Persian with English abstract).
Malakouti, M.J. and Homaee, M., 2004. Soil fertility in arid and semi arid regions (problems and solutions). Tarbiat Modares University Publishing, Tehran, Iran.
Matkan, A.A., Kazemi, A., Gilly, M.R. and Ashourloo, D., 2009. Using RS and GIS for considering cadmium distribution and polluted vegetation in Esfahan province. Environmental Sciences. 6, 65-76. (In Persian with English abstract).
McGrath, D., Zhang, C. and Carton, O.T., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution. 127, 239-248.
Milinović, J., Lukić, V., Nikolić-Mandić, S. and Stojanović, D., 2008. Concentrations of heavy metals in NPK fertilizers imported in serbia. Pestic Fitomed. (Beograd). 23, 195-200.
Mohamadipour, F. and Asadi Kapourchal, S., 2012. Assessing land cress potential for phytoextraction of cadmium from Cd contaminated soils. Water and Soil Resources Conservation. 2, 25-35. (In Persian with English abstract).
ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم ...
پاییز ،3 فصلنامه علوم محیطی، دوره چهاردهم، شماره 144
Morton-Bermea, O., Hernandez-Alvarez, E., Guzman-Morales, R.L.J. and Martinez, G., 2010. Spatial distribution of heavy metals in top soils around the industrial facilities of cromatos de Mexico, Tultitlan Mexico. Bulletin of Environmental Contamination and Toxicology. 85, 520-524.
Oyedele, D.J., Asonugho, C. and Awotoye, O.O., 2006. Heavy metals in soil and accumulation by edible vegetable after phosphate fertilizer application. Electronic Journal of Environmental, Agricultural and Food Chemistry. 5, 35-42.
Page, A.L., Miller, R.H. and Keeney, D.R., 1982. Methods of soil analysis part 2 chemical and microbiological properties, second ed. Agronomy Monograph No.9. ASA-SSSA, Madison, Wiscinsin, USA.
Pirzadeh, M., Afyuni, M. and Khoshgoftarmanesh, A.H., 2012. Status of zinc and cadmium in paddy soils and rice in Isfahan, Fars and Khuzestan provinces and their effect on food security. Journal of Water and Soil Science (Journal of Science and Technology of Agriculture and Natural Resources). 16, 81-93. (In Persian with English abstract).
Rahimi, Gh. and Charkhabi, A., 2014a. Spatial distribution of cadmium in paddy soils southwest of Isfahan using geostatistics and GIS. Journal of Water and Soil. 28, 754-765. (In Persian with English abstract).
Rahimi, Gh. and Charkhabi, A., 2014b. Assessment of some heavy metals in paddy soils and their accumulation in the organs of rice in the Lenjan area of Isfahan province. Water and Soil Science. 24, 107120. (In Persian with English abstract).
Rahimpour, F. and Abbaspour, R.A., 2014. Mapping concentrations of heavy metals in soils using Kriging and RBF Case study: Harris township. Scientific - Research Quarterly of Geographical Data (SEPEHR). 23, 55-67. (In Persian with English abstract).
Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I. and Raskin, I., 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology. 13, 468-474.
Sarmadian, F., Keshavarzi, A., Rooien, A., Iqbal, M., Zahedi, G. and Javadikia, H., 2014. Digital mapping of soil phosphorus using multivariate geostatistics and topographic information. Australian Journal of Crop Science. 8, 1216-1223.
Schroeder, H.A. and Balassa, J.J., 1963. Cadmium: Uptake by vegetables from superphosphate in soil.
Science. 140, 819-820.
Shokrzadeh, M., Rokni, M.A. and Gastvan. 2013. Lead, cadmium, and chromium concentrations in irrigation supply of/and Tarom rice in central cities of mazandaran province-Iran. Journal of Mazandaran University of Medical Sciences. 23, 234-242. (In Persian with English abstract).
Sheppard, S.C., Grant, C.A., Sheppard, M.I., De Jong, R. and Long, J., 2009. Risk indicator for agricultural inputs of trace elements to Canadian soils. Journal of Environmental Quality. 38, 919-932.
Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H. and Yu, Ch., 2007. Spatial distribution of heavy metals in soils: a case study of Changxing, China. Environmental Geology. 52, 1-10.
Sposito, G., Lund, J. and Chang, A.C., 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal. 46, 260-264.
Taghipour, M., Ayoubi, Sh. and Khademi, H., 2010. Spatial variability of total Ni and Cu concentration in surface soils surrounding the Hamadan city using geostatistic technique. Journal of Water and Soil Conservation. 17, 69-87. (In Persian with English abstract).
Taheri, M., Riahi Bakhtiari, A.R., Naimi, B. and Gholamalifard, M., 2014. The concentration and spatial distribution of mercury, lead, and cadmium in surface sediments of mangrove forests using geostatistics in GIS environment. Journal of Environmental Studies. 40, 297-310. (In Persian with English abstract).
Thomas, E.Y., Omueti, J.A.I. and Ogundayomi, O., 2012. The effect of phosphate fertilizer on heavy metal in soils and amaranthus caudatus. Agriculture and Biology Journal of North America. 3,145-149.
Wong, S.C., Li, X.D., Zhang, S.H.Q. and Min, Y.S., 2002. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution. 119, 33-44.
Yunfeng, X., Tong-bin, C., Mei, L., Jun, Y., Qingjun, G., Bo, S. and Xiao-yong, Z., 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere. 82, 468–476.
اسدی کپورچال, صفورا , همایی, مهدی و رمضان پور, حسن . (1395). ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم با استفاده از روشهای زمینآمار و GIS. فصلنامه علوم محیطی, 14(3), 131-146.
MLA
اسدی کپورچال, صفورا , , همایی, مهدی , و رمضان پور, حسن . "ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم با استفاده از روشهای زمینآمار و GIS", فصلنامه علوم محیطی, 14, 3, 1395, 131-146.
HARVARD
اسدی کپورچال, صفورا, همایی, مهدی, رمضان پور, حسن. (1395). 'ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم با استفاده از روشهای زمینآمار و GIS', فصلنامه علوم محیطی, 14(3), pp. 131-146.
CHICAGO
صفورا اسدی کپورچال , مهدی همایی و حسن رمضان پور, "ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم با استفاده از روشهای زمینآمار و GIS," فصلنامه علوم محیطی, 14 3 (1395): 131-146,
VANCOUVER
اسدی کپورچال, صفورا, همایی, مهدی, رمضان پور, حسن. ارزیابی آلودگی خاکهای شالیزاری استان گیلان با کادمیم با استفاده از روشهای زمینآمار و GIS. فصلنامه علوم محیطی, 1395; 14(3): 131-146.