ارزیابی مطلوبیت زیستگاه تمساح مردابی ( Crocodylus palustris Lesson, 1831 ) به روش حداکثر بی نظمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش محیط زیست طبیعی، سازمان حفاظت محیط زیست، تهران، ایران

2 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران

3 بخش محیط زیست طبیعی، اداره کل حفاظت محیط زیست استان سیستان و بلوچستان، زاهدان، ایران

4 دانشکده محیط زیست، کرج، ایران

چکیده

سابقه و هدف:
تمساح مردابی یکی از گونه‌های آسیب‌پذیر در رده‌بندی اخیر IUCN است که در اکثر گستره پراکنش آن به دلیل تهدیدهای انسانی با کاهش جمعیت و حذف جمعیت‌های محلی رو‌به‌رو شده ‏است. امروزه توجه به مدل‌سازی پیش‌بینی توزیع گونه در مطالعات زیست‌شناسی حفاظت و بوم‌شناختی رو به افزایش است، با این حال تا کنون برای این گونه چنین مطالعاتی در ایران صورت نگرفته است، بنابراین این مطالعه با هدف بررسی مطلوبیت زیستگاه تمساح انجام شد.
مواد و روش‌ها:
حوزه‌های آبخیز رودخانه‌های سرباز و کاجو در منطقه مکران غربی‌ترین بخش حوزه پراکنش تمساح مردابی است که در جنوب استان سیستان و بلوچستان واقع است. مدل‌سازی مطلوبیت زیستگاه تمساح مردابی در این منطقه به روش حداکثر بی‌نظمی انجام شد. فاکتورهای محیط‌ زیستی ‏شامل ارتفاع، شاخص پوشش‌گیاهی 1‏ NDVI، دما، بارندگی، فاصله از سکونت­گاه‌های شهری، سکونت­گاه‌های روستایی، جاده و ‏رودخانه‌ها بود. برای حذف متغیرهای با همبستگی بالا (۷0/۰< ) از آزمون همبستگی پیرسون استفاده شد و با استفاده از شاخص Moran ‏(‏Levine, 2004‎‏)‏ از نبود وجود همبستگی مکانی میان داده‌های حضور گونه اطمینان حاصل شد. حساسیت‌سنجی و بررسی اهمیت نسبی هر یک از متغیرها با کمک درصد سهم مشارکت و اهمیت هر متغیر، منحنی‌های پاسخ متغیرها به روش جک‌نایف محاسبه شد. حد آستانه برای طبقه‌بندی منطقه­ های مطلوب بر اساس میزان آموزش بیشترین حساسیت به‌علاوه ویژگی (MTSS) و آموزش برابر حساسیت و ویژگی (ETSS) انجام شد.
نتایج و بحث:
میزان مربوط به سطح زیرمنحنی ROC بیشتر از 80/0 بود که کارایی عالی مدل را نشان می‌دهد. بر اساس درصد سهم مشارکت، اهمیت نسبی و نتیجه آزمون جک نایف، مهم‌ترین متغیرهای زیستگاهی، فاصله از رودخانه، دما و ارتفاع از سطح دریا شناسائی شدند. میزان آستانه‌ای ETSS و MTSS به ترتیب 18/0 و 52/0 به‌دست آمد که بر اساس این آستانه‌ها نقشه مطلوبیت زیستگاه به دو طبقه مطلوب و نامطلوب طبقه‌بندی و به ترتیب مساحت منطقه مطلوب ‏1629‏ و 312 کیلومتر مربع برآورد شد. مقایسه آستانه‌های مورد نظر در طبقه‌بندی نشان داد که MTSS از درستی بالاتری برخوردار است. با توجه به اینکه بخش عمده منطقه مطلوب زیستگاهی خارج از منطقه حفاظت شده گاندو قرار دارد، به عنوان پیشنهاد مدیریتی برای حفاظت این گونه اصلاح مرز و افزایش محدوده­ ی منطقه حفاظت شده مطرح می‌شود. بررسی اثرهای سدها بر مطلوبیت زیستگاه تمساح نشان داد که سدها سبب افزایش مطلوبیت زیستگاه شده‌اند، ولی باید توجه داشت که اگر چه احداث سدها موجب تامین زیستگاه و منبع­های غذایی شده و از این رو دارای کارکرد‌های مثبت هستند ولی تاثیرپذیری­ های منفی مانند از بین‌رفتن و کاهش محل‌های مناسب تخم‌گذاری و کاهش میزان موفقیت تولیدمثل گونه را نیز موجب می‌شوند. همچنین تکه‌تکه بودن لکه‌های مطلوب زیستگاه به‌دست‌آمده در این تحقیق و وجود رفتار مهاجرت در این گونه نشان داد که  راهروهای ارتباطی را نیز باید مورد توجه قرار داد و برنامه‌های حفاظتی برای آن‌ها نیز درنظرگرفت.
نتیجه‌گیری:
از آنجائی که فاصله از رودخانه به عنوان مهم‌ترین عامل تعیین‌کننده مطلوبیت زیستگاه تمساح، تحت تاثیر نوسانان­ های شرایط اقلیمی و وجود آب قرار دارد، تضاد بین این گونه با بومیان (آب و غذا) و همین طور رفتار مهاجرت گونه از طریق کریدورهای ارتباطی بین لکه‌های زیستگاهی جدا از هم ادامه خواهد داشت که در فصل­ های گرم سال و شرایط خشکسالی شدیدتر نیز خواهد شد. بنابراین علاوه ­بر تجدید نظر در وسعت منطقه حفاظتی و نگهداری راهروهای ارتباطی بین زیستگاه‌ها، افزایش پایش گونه، آموزش و همکاری‌ جوامع بومی و محلی در امر حفاظت ضروری خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing habitat suitability of the mugger crocodile using maximum entropy

نویسندگان [English]

  • Asghar Mobaraki 1
  • Malihe Erfani 2
  • Elham Abtin 3
  • Farhad Ataie 4
1 Natural Environment Division, Department of Environment, Tehran, Iran
2 Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Zabol, Iran
3 Natural Environment Division, Department of Environment, Zahedan, Iran
4 College of Environment, Karaj, Iran
چکیده [English]

Introduction:
The mugger crocodile is one of the most vulnerable species in the recent IUCN Red list classification. Most of the populations of the species are in decline and extirpation due to the threats caused by human activities. Nowadays, species distribution modeling plays an essential role in their conservational biology and ecological studies. However, considering the lack of such data on the mugger crocodile in Iran, this study was conducted to evaluate the suitability of the crocodile habitats in the country.
Material and methods:
The watersheds of the Sarbaz and Kaju rivers in the Makran area are the westernmost part of the distribution range of the mugger crocodile, located in the southern part of Sistan and Baluchestan Province. Modeling the suitability of the crocodile habitats in this area was conducted using maximum entropy. The environmental variables of elevation, Normalized Difference Vegetation Index (NDVI), temperature, rainfall, and the distance from urban and rural settlements‎, roads, and rivers were included in the study. To eliminate high correlation variables (<0.70), Pearson correlation test was used. By using Moran’s I, the lack of spatial autocorrelation between the presence data of the species was assured. Sensitivity and evaluation of the relative importance of each variable were done by the percent contribution and permutation importance of each variable. Also, the response curves of the variables and the jackknife test were calculated. Maximum training sensitivity plus specificity (MTSS) and equal training sensitivity and specificity (ETSS) were used as thresholds to classify the suitable regions.
Results and discussion:
The amount of AUC was more than 0.8, indicating excellent ‎‎performance of the model. Based on the percent of contribution and permutation ‎importance of each variable and the results of the jackknife test, ‎the distance from the rivers, temperature and elevation were the most important variables. The threshold values of ETSS and MTSS were 0.52 and 0.18, respectively. According to the thresholds, the suitability of the habitat was classified into two suitable and unsuitable classes with an area of 312 and 1629 km2, respectively. Comparison of the thresholds in classification showed that ETSS is more accurate. Considering that the major part of the suitable habitats is located outside of the Gandou Protected Area, revision of the borders of the protected area is proposed as a suggestion for management for the conservation of this species. The study of the effect of dams on the crocodile habitat suitability in the area showed that dams increased the habitat suitability, but their negative impacts, like the loss of nesting sites, should be noted. Also, the fragmentation of the suitable habitats was obvious in the study, and considering the migration behavior of the species, corridors should also be included in conservation plans.
Conclusion:
Distance from the river, as the main variable determining the suitability of the mugger crocodile habitat, is affected by climatic fluctuations and the water amount. Conflicts between the crocodiles and local people for resources (water and food) as well as the immigration of crocodiles between separate habitat patches would be more severe in the warm seasons and drought situations. Therefore, in addition to revising the area of the protected area and conservation of the habitats, increasing species monitoring, public education and participation of local communities in the conservation actions would be essential.

کلیدواژه‌ها [English]

  • Environmental variables
  • Makran region‎
  • Modeling
  • Mugger crocodile
  • Probability of habitat ‎suitability
  1. Abtin, E., 2012. Habitat suitability of mugger crocodile in Sarbaz River, Iran. Wildlife Middle East. 6, 5.
  2. Anton, H., 1994. Elementary Linear Algebra, 7th ed. John Wiley & So
  3. ns. Hoboken, United States.
  4. Bhatt, H.P., Saund, T.B. and Thapa, J., 2012. Status and threats to Mugger Crocodile Crocodylus palustris Lesson, 1831 at Rani Tal, Shuklaphanta Wildlife Reserve, Nepal. Nepal Journal of Science and Technology. 13, 125-131.
  5. Chang, M.S., Gachal, G.S., Qadri, A.H., Khowaja, Z., Khowaja, M. and Heikh, M.Y., 2013. Ecological status and threats of marsh crocodiles (Crocodilus palustris) in Manghopir Karachi. International Journal of Biosciences. 3, 44-54.
  6. Chang, M.S., Gachal, G.S., Qadri, A.H., Memon, K.H., Sheikh, M.Y. and Nawaz, R., 2015. Distribution, population status and threats of Marsh Crocodiles in Chotiari Wetland complex Sanghar, Sindh-Pakistan. Biharean Biologist. 9, 22-28.
  7. Choudhury, B.C. and de Silva, A., 2013. Crocodylus palustris. The IUCN Red List of Threatened Species 2013: e.T5667A3046723.
  8. Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y. and Wang, Z.G., 2014. The predictive performance and stability of six species distribution models. PloS one. 9(11), e112764.
  9. Elith, J., Graham, C.H., Anderson, R.P., Dudık, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. and Zimmermann, N.E., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29, 129–151.
  10. Elith, J., Phillips, S.J., Hastie, T., Dudik M., Chee, Y.E. and Yates, C.J., 2011. A statistical explanation of maxent for ecologists. Diversity and distribution. 17, 43-57.
  11. ESRI., 2016. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
  12. Fielding, A.H. and J.F. Bell., 1997. A review of methods for the measurement of prediction errors in conservation presence/absence models. Environmental Conservation. 24, 38-49.
  13. Giovanelli, J.G.R., Siqueira M.F., Haddad, C.F.B. and Alexandrino, J., 2010. Modeling a spatially restricted distribution in the neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modeling. 221, 215-24.
  14. Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R. and Wintle, B.A., 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography. 24, 276–292.
  15. Guisan, A., Edwards, T.C. and Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling. 157, 89–100.
  16. Hijmans, R.J., 2012. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology. 93, 679–688.
  17. Jimenez-Valverde, A. and Lobo, J.M., 2007. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica. 31, 361-369.
  18. Liu, C., Newell, G. and White, M., 2016. On the selection of thresholds for predicting species occurrence with presence-only data Canran. Ecology and Evolution. 6, 337–348.
  19. Liu, C., Berry, P.M., Dawson, T.P. and Pearson, R.G., 2005. Selecting thresholds of occurrence in the prediction of species distribution. Ecography. 28, 385-393.
  20. Levine, N., 2004. CrimeStat III: a spatial statisticsprogram for the analysis of crime incident locations. Ned Levine & Associates, Houston, TX., and the National Institute of Justice, Washington, DC.
  21. Merow, C., Smith, M.J. and Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. 36, 1058–1069.
  22. Mobaraki, A. and Abtin, E., 2007. Movement behavior of Muggers, a potential threat. Crocodile Specialist Group Newsletter. 26, 4-5.
  23. Mobaraki, A. and Ayafat, S.A., 2007. Crocodile Conservation and Farming, Roze-E- Now, Tehran, Iran.
  24. Newsom, J.D., Joanen,1. and Howard, R.J., 1987. Habitat suitability index models: American alligator. U.S. Fish Wildl. Servo 8iol. Rep. 82(10.136).
  25. Phillips, S.J. and Dudık, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31, 161-175.
  26. Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190, 231-259.
  27. Ranjbar, N., Hemami, M., Tarkesh, M. and Shahgholian, J., 2016. Seasonal assessment of habitat suitability of the Wild Goat (Capra aegagrus) in Mountainous Areas of Kolah-Qazi National Park using maximum entropy approach. Iranian Journal of Applied Ecology. 5, 69-83.
  28. Rao, R.J. and Gurjwar, R.k., 2013. Crocodile human conflict in National Chambal Sanctuary, India. 22 nd Working Meeting of the IUCNSSC Crocodile Specialist Group, 20-23 May 2013, Sri Lanka, 105 – 109.
  29. Trisuratt, Y., Bhumpakphan, N., Reed, D.H. and Kanchanasaka, B., 2012. Using species distribution modeling to set management priorities for mammals in northern Thailand. Journal for Nature Conservation. 20, 264-273.
  30. Varasteh Moradi, H., Salmanmahiny, A. and Gholipour, M., 2015. Wildlife Habitate Evaluation, Dey-Negar pobliation, Tehran, Iran.
  31. Whitaker, R. and Whitaker, Z., 1984. Reproductive biology of Mugger. Journal of the Bombay Natural History Society. 81, 297–315.