مدل سازی ارتباط کادمیم با برخی از ویژگی‌های فیزیکی و شیمیایی خاک در باغ‌های پسته با استفاده از رگرسیون و شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات علوم باغبانی، پژوهشکده پسته، سازمان تحقیقات، آموزش و ترویج کشاورزی، رفسنجان، ایران

2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ولی عصر (عج)، رفسنجان، ایران

3 گروه کشاورزی، دانشگاه پیام نور، کرمان، ایران

چکیده

سابقه و هدف:
افزایش روز افزون غلظت فلز­های سنگین در محیط زیست، سبب ایجاد نگرانی‌های جدی ‌محیط زیستی شده است. کادمیم یکی از سمی‌ترین عنصر­های سنگین برای موجود­های زنده است که نقش زیستی ندارد. تاکنون در مورد وضعیت عنصر­های سنگین در خاک باغ‌های پسته و شناسایی عامل­های خاکی مؤثر بر آن‌ها، پژوهش‌های چندانی انجام نشده است. بنابراین، هدف از انجام این پژوهش، تعیین رابطه کادمیم عصاره‌گیری شده با دی تی پی اِ در خاک با دیگر ویژگی­ های فیزیکی و شیمیایی خاک، در خاک‌های کشاورزی شهرستان رفسنجان به کمک مدل‌سازی مبتنی بر روش رگرسیون گام‌به‌گام و شبکه عصبی مصنوعی بود.
مواد و روش‌ها:
در این تحقیق 140 نمونه خاک از دو عمق صفر تا 40 و 40 تا 80 سانتی‌متری از باغ‌های پسته‌ی شش منطقه از حومه‌ی رفسنجان تهیه شد. ویژگی‌های خاک شامل غلظت کادمیم و روی قابل‌جذب در خاک با استفاده از روشدی تی پی اِ، غلظت فسفر به روش اولسن، درصد شن، رس و سیلت خاک به روش هیدرومتر، pH و رسانایی الکتریکی عصاره اشباع خاک بترتیب توسط دستگاه‌های pH متر و EC متر اندازه‌گیری شدند. بمنظور بررسی رابطه‌ی بین کادمیم قابل جذب و ویژگی­ های فیزیکی و شیمیایی خاک، از روش رگرسیون گام‌به‌گام و شبکه‌ی عصبی مصنوعی (پیش‌خور چندلایه) استفاده شد.
نتایج و بحث:
نتایج نشان داد که بین فسفر و درصد رس با کادمیم خاک، همبستگی مثبت و معنی‌دار، بین Cd-DTPA با pH و درصد رس خاک، همبستگی منفی و معنی‌دار و بین کادمیم قابل جذب با روی قابل جذب، روی کل و کادمیم کل خاک همبستگی مثبت معنی‌داری وجود دارد. همچنین نتایج نشان داد که هر دو روش مدل‌سازی از دقت مناسبی برای تخمین غلظت کادمیم در خاک برخوردارند اگرچه مدل شبکه عصبی دقت خیلی بیشتری داشت. ضریب تبیین و ریشه میانگین خطا برای مدل شبکه عصبی برای داده‌های آزمون بترتیب 84.3 درصد و 0.01 و برای مدل رگرسیون گام به گام 27.2 درصد و درصد1.43 بود. همچنین غلظت کادمیم، بیشترین حساسیت را به غلظت روی در خاک نشان داد و دیگر پارامترهای رس، pH، فسفر، EC و شن ‌بترتیب، در درجه بعدی از اهمیت قرار داشتند. این نتایج تایید می‌کند که در باغ های پسته بدلیل مصرف کودهای حاوی روی و افزایش مصرف کود‌های فسفاته که دارای ناخالصی زیادی از نظر مقدار کادمیم هستند، افزایش غلظت کادمیم در خاک باغ های پسته مشاهده می‌شود.
نتیجه­ گیری:
کودهای شیمیایی روی و فسفر مورد استفاده در باغ‌های پسته دارای ناخالصی قابل‌توجهی از کادمیم هستند که در اثر استفاده بی‌رویه و درازمدت می‌توانند سبب آلودگی خاک نسبت به کادمیم و جذب این عنصر سمی در گیاه و میوه پسته شوند. بنابراین باید ضمن رعایت استانداردهای ملی و بین ­المللی در تولید و واردات کودها، استفاده از این کودها نیز براساس نیاز و با تحلیل و تفسیر نتایج تجزیه خاک و برگ، بهینه باشد تا خطر آلودگی میوه پسته به کادمیم کاهش یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the relationship between cadmium and some soil physical and chemical properties in Pistachio orchards using regression and artificial neural network

نویسندگان [English]

  • Seyed Javad Hosseinifard 1
  • Hossein Shirani 2
  • ُSomaye Sadr 3
  • Hakimeh Hashemipour 2
1 Pistachio Research Center, Horticultural Sciences Research Institute, Agriculture Research Education and Extension Organization (AREEO), Rafsanjan, Iran
2 Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
3 Agriculture Group, Payame Noor University, Kerman, Iran
چکیده [English]

Introduction:
Increasing concentrations of heavy metals in the environment have raised serious environmental concerns. Cadmium is one of the most toxic heavy elements in organisms and it has no biological role. So far, little research has been done on the status of heavy metals in pistachio orchards and factors affecting them. Therefore, the purpose of this study was to determine the relationship between cadmium extracted with DTPA in soil and other soil physical and chemical properties in agricultural soils of Rafsanjan using stepwise regression and artificial neural network modeling.
Material and methods:
In this study, 140 soil samples from two depths of 0 to 40 and 40 to 80 cm were collected from pistachio orchards in six regions of Rafsanjan suburb. Soil characteristics including available Cd and Zn concentration measured using DTPA, P concentration by Olsen method, percent of sand, clay and silt by hydrometer method, and pH and electrical conductivity of soil saturated extract by pH meter and EC meter, respectively, were measured. In order to investigate the relationship between available Cd and physical and chemical properties of the soil, stepwise regression and artificial neural network (multi-layer feed forward) were used.
Results and dissussion:
The results showed a significant and positive correlation between phosphorus and clay content and soil cadmium, a negative and significant correlation between Cd-DTPA and pH and clay percentage, and a positive correlation between available Cd and available Zn, total Zn, and total Cd. The results also showed that both modeling methods are accurate in estimating soil cadmium concentration, although the neural network model was more accurate. The R2 and root of mean square error for the neural network model were 84.3% and 0.01% for the test data, and 27.2% and 1.43% for the stepwise regression model, respectively. Also, cadmium concentration showed the highest sensitivity to zinc concentration and other parameters such as clay, pH, phosphorus, EC, and sand were in the next order of importance, respectively. These results confirm that due to the consumption of zinc containing fertilizers and the increased consumption of phosphate fertilizers which have high impurity in the amount of cadmium, an increase in soil cadmium concentration is observed in the pistachio orchards.
Conclusion:
Zinc and phosphorus fertilizers used in pistachio orchards have a significant impurity of cadmium that can cause soil contamination by cadmium due to its long-term use and absorption of this toxic element in pistachio plant and fruit. Therefore, while complying with national and international standards in the production and import of fertilizers, the use of these fertilizers should be optimized by analyzing and interpreting the results of soil and leaf analysis to reduce the risk of pistachio fruit contamination to cadmium.

کلیدواژه‌ها [English]

  • Modeling
  • Artificial neural network
  • Stepwise regression
  • Zinc
  • Phosphorus
  1. Afyuni, M., Khoshgoftarmanesh, A.H., Dorostkar, V. and Moshiri, R., 2007. Zinc and cadmium content in fertilizers commonly used in Iran. Proceeding of the International Conference Zinc Crops, Istanbul, Turkey.
  2. Alloway B.J. (ed). 2013. Heavy Metals in soils. pp: 11-50 Volume 22, Springer, John Wiley and Sons, INC, New York.
  3. Amini, M., Afyuni, M., Khademi, H., Abbaspour, K.C. and Schulin, R., 2005. Mapping risk of cadmium and lead contamination to human health in soil of central Iran. Science of the Total Environment. 347: 64-77.
  4. Anagu, I., Ingwersen, J., Utermann, U., Streck, T., 2009. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma. 152, 104–112.
  5. Bazubandi, A., Emamgholizade, S., Ghorbani, H., Afshari Badrlu, T., 2017. Estimation of the concentration of cadmium in soil by using ANN and ANFIS models. Journal of national environment. 70(3), 509-523.
  6. Bohay, D., 1997. Screening survey for metals in fertilizers and industrial by-product fertilizers in Washington State. Ecology Publication. 97-341.
  7. Cariny, T., 1995. The re-use of contaminated land: a handbook of risk assessment. John Wiley and Sons, New York, US.
  8. Covelo, E.F., Andrade, M.L. and Vega, F.A., 2004. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. Journal Colloid and Interface Sciences. 280(1), 1-8.
  9. Gee, G.W. and Bauder, J.W., 1986. Particle size analysis, In: Klute A. (Eds.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd Edition, American Society of Agronomy. Soil Science Society of America, Madison, WI. PP. 383-411.
  10. Gupta, S.S. and Bhattacharyya, K.G., 2008. Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Environmental Management. 87, 46-58.
  11. Hu, M.J., Wei, Y.L., Yang, Y.W. and Lee, J.F., 2004. X-ray absorption spectroscopy study of chromium recovered from Cr (VI)-containing water with rice husk. Journal Physics. 16, 3473-3478.
  12. Ijagbemi, C.O., Tbeak, M., and Kim, D., 2009. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solution. Hazardous Materials. 166, 538-548.
  13. Kabata-Pendias, A., 2001. Trace elements in soils and plants, third ed. CRC Press, Boca Raton, Florida, USA.
  14. Kabata-Pendias, A. and Pendias, H., 2000. Trace Element in Soils and Plants, third ed, CRC Press, Boca Raton, Florida, USA.
  15. Kamali, M. 2011, Assessment the amount of cadmium in a number of phosphate fertilizers and the transfer ability it to the plant, MSc thesis. Vali- e- Asr University. Rafsanjan. Kerman. Iran.
  16. Kirchner, J.W., Clifford, S., Riebe, L., Kenneth Ferrier, L. and Robert Finkel, C., 2006. Cosmogenic nuclide methods for measuring long-term rates of physical erosion and chemical weathering. Journal of Geochemical Exploration. 88, 296-299.
  17. Lindsay, W.L. and Norvell, W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal. 42, 421-428.
  18. Liu, M.L., Liu, X.N., Li, M., Fang, M.H., Chi, W.X., 2010. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosystems Engineering. 106, 223–233
  19. Maddahian, H., 1991. Assessment of underground water resources status, especially Rafsanjan and Kerman, Ministry of agriculture, soil and water research in Kerman province.
  20. Malakuti, L.J. and Ghaybi M.N., 2000, Determine the critical point of elements in the soil, plant and fruit. The Organization of the research, education and agricultural, training and equipping human resources, agricultural education Publisher, Tehran, Iran.
  21. Malandrino, M., Abollin, O., Buoso, S., Giacomino, A., Gioia, C.L., and Mentasti, E. 2011. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemospher. 82, 169-178.
  22. McLaughlin, J.J., Hamon, R.E., McLaren, R.G., Speir, T.W. and Rogers, S.L., 2000. Review Abioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research. 34, 1-54.
  23. Montgomery, D.C., Peck, E.A. and Vining, G.G., 2012. Introduction to linear regression analysis (Vol. 821). John Wiley & Sons.
  24. Olsen, S.R. and Sommers, L.E., 1982. Phosphorus. In: page, A.L., Miller, R.H. and Keeney, D.R. (Eds.), Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties. Soil Science Society of America, American Society of Agronomy, Madison, Wisconsin, USA, pp 403-429.
  25. Pachepsky, Y.A., Timlin, D., and Varallyay, G. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal. 60, 727–733.
  26. Roberts, T.L., 2014. Cadmium and phosphorous fertilizers: the issues and the science. Procedia Engineering, 83, 52-59.
  27. Ryan, J., Estefan, G., and Rashid, A. 2007. Soil and plant analysis laboratory manual. ICARDA
  28. Shirani, H., 2017. Artificial neural network with application approach in agricultural sciences and natural resources. Vali-e-Asr university of Rafsanjan, 310p.
  29. Shirani, H., Hosseinifard, S.J. and Hashemipour, H., 2018. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran. Science of The Total Environment, 616, pp.881-888.
  30. Tamari, S., Wosten, J.H.M. and Ruz-suarez, J.C., 1996. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society of America Journal. 60, 1732-1741.
  31. Wasiol, C.S., Motavalli, P., Kitchen, N.R., Otter, D.K., 1998. Soil phosphorous spatial distribution in pastures receiving poultry litter application. Agronomy abstracts. American Society of Agronomy. Madison, W.I.
  32. Yeganeh, M., Afyuni, M., Khoshgoftarmanesh, A.H., Rezaeinejad, Y. and Schulin, R., 2010. Transport of zinc, copper, and lead in a sewage sludge amended calcareous soil. Soil Use and Management. 26, 176-182.
  33. Zheng, N., Wang, Q.C. and Zhang, X.W., 2007. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. Science. Total Environent. 387, 96-104.