کارایی فتوکاتالیست TiO2 آناتاز مغناطیسی لود شده توسط گرافن کوانتوم دات در حذف داروی ایمی‌پرامین از محیط آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی محیطی، پژوهشکده علوم پایه کاربردی، جهاد دانشگاهی، تهران، ایران

2 گروه محیط‌زیست، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، مازندران

3 گروه علوم محیط زیست، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه شیمی تجزیه و آلاینده‌ها، دانشکده علوم شیمی و نفت، دانشگاه شهید بهشتی، تهران، ایران

چکیده

سابقه و هدف: صنایع داروسازی در رده چهارم تولید فاضلاب قرار دارد و حاوی مقادیر قابل توجهی از داروها و پیش ماده‌های مورد نیاز در داروسازی هستند که سمی بوده و با روش‌های سنتی به‌راحتی حذف نمی‌شوند و استفاده از روش‌های پیشرفته جهت پاکسازی مورد نیاز است. هدف از این پژوهش، سنتز Fe3O4، سنتز فتوکاتالیست TiO2 آناتاز، نشاندن TiO2 روی Fe3O4، سنتز GQD از مالتوز برای اولین بار، نشاندنGQD  روی Fe3O4/TiO2 و تولید نانوکامپوزیت Fe3O4/TiO2/GQD و بررسی میزان کارایی فتوکاتالیست سنتزی در تخریب فتوکاتالیستی ایمی‌پرامین از محیط آبی است.
مواد و روش‌ها: فتوکاتالیست سنتزی Fe3O4/TiO2/GQDs شامل سه جزء است که در چهار مرحله سنتز گردیده است. در ابتدا، اکسید آهن به فرم مگنتیت و به روش هم‌رسوبی تهیه شد. سپس Fe3O4/TiO2 با استفاده از روش سل - ژل و از تیتانیوم ایزوپروپوکساید (IV) به‌عنوان منبع تیتانیوم و در فرم بلوری آناتاز سنتز گردید. در مرحله سوم، از مالتوز به‌عنوان منبع کربن برای تولید GQD به روش هیدروترمال استفاده شد. در پایان، فتوکاتالیست به‌روش هیدروترمال از نشاندن GQD در ساختار Fe3O4/TiO2 حاصل شد. ویژگی‌های ساختاری و کیفیت فتوکاتالیست با استفاده از روش‌های FT-IR، ایزوترم جذب/واجذب نیتروژن، FESEM و HRTEM بررسی شد. در پایان، کارایی تخریب فتوکاتالیستی تحت تأثیر متغیرهای مختلف بررسی شد.
نتایج و بحث: نتایج طیف‌سنجی FT-IR نانو پودرها و فتوکاتالیست سنتزی بیان کننده وجود پیک‌های جذبی C=C، C-H، C-O، Fe–O و Ti-O-Ti است. همچنین پیک‌های جدید در cm-1 1400 و cm-1 1170 چه ­بسا مربوط به تشکیل پیوند Fe–O بین آهن Fe3O4 و گروه کربوکسیل GQDS است که گویای تشکیل موفقیت‌آمیز Fe3O4/TiO2/GQD است. مساحت سطح ویژه فتوکاتالیست بر پایه ایزوترم جذب/واجذب m²/g 38 است. همچنین براساس طبقه‌بندی آیوپاک، این ایزوترم‌ها از نوع IV و مربوط به ساختارهای متخلخل مزوپور و حلقه هیستریس H2 است. تصویرهای FESEM بیان کننده ریخت‌شناسی کمابیش کروی فتوکاتالیست سنتزی و توزیع یکنواخت نانوذرات TiO2 در سطح مگنتیت است که بدون تغییر در مورفولوژی و فقط با تغییر اندازه ذرات پس از نشستن TiO2 روی سطح نانوذرات اکسید آهن مغناطیسی همراه بوده است. تصویرهای HRTEM گویای شکل کروی ذرات با قطر عمدتا کمتر از nm 50 و فاصله مشبک مربوط به آناتاز (TiO2) و GQDs است. همچنین عملکرد فتوکاتالیستی نانوکامپوزیت سنتزی و دست­یابی به بیشینه درصد حذف ایمی‌پرامین متأثر از متغیرهای مختلف دوز فتوکاتالیست، pH، دمای محیط، مدت زمان تابش مورد سنجش قرار داده شد. شرایط بهینه حذف شامل دوز فتوکاتالیست 5/0 گرم بر لیتر، pH برابر با 3، دما برابر با C° 40 در مدت زمان تابش 120 دقیقه با راندمان بالغ‌بر 90% در پساب آزمایشگاهی و کمابیش 70% برای پساب واقعی به ­دست آمد. آزمایش ­های بازیابی فتوکاتالیست بیان کننده پایداری فتوکاتالیست سنتزی است که می‌تواند بدون از دست دادن فعالیت اولیه قابل ‌استفاده دوباره برای فرایند تصفیه باشد.
نتیجه‌گیری: نتایج نشان می‌دهد که مکانیسم تخریب ایمی‌پرامین از نوع تخریب اکسیداسیونی از طریق حفره­ های نوری تولید شده است و از سینتیک درجه اول تحت تابش نور UVA پیروی می‌نماید. همچنین یافته‌ها گویای قابلیت کاربرد صنعتی فتوکاتالیست سنتزی Fe3O4/TiO2/GQDs در تصفیه پساب حاوی آلاینده‌های آلی پایدار تحت شرایط بهینه است.

کلیدواژه‌ها


عنوان مقاله [English]

The efficiency of magnetic TiO2 anatase loaded by graphen quantum dots for photocatalytic degradation of imipramine from aquatic media

نویسندگان [English]

  • Raheleh Hatefi 1
  • Habibollh Younesi 2
  • Ali Mashinchian-Moradi 3
  • Saeed Nojavan 4
1 Department of Environmental Geology, Research Institute of Applied Sciences, ACECR, Tehran, Iran
2 Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Mazandaran, Iran
3 Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
4 Department of Analytical Chemistry and Contamination, Faculty of Chemistry Science and Petroleum, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction: The pharmaceutical industry is occurred in the fourth wastewater production with significant amounts of drugs and precursors required in pharmacy that are toxic and are not removed by traditional methods, so have to be used advanced technology for treatment. The purpose of this study was synthesis of Fe3O4, anatase TiO2, loading of TiO2 on the Fe3O4 surface, synthesis of GQD based on maltose for the first time, loading of GQD on the Fe3O4/TiO2 and investigating the efficiency of as-synthesized photocatalyst Fe3O4/TiO2/GQDs for imipramine photodegradation from aquatic media.
Material and methods: Firstly, prepared photocatalyst Fe3O4/TiO2/GQDs included three components, which produced in four steps. Firstly, iron oxide was prepared in the form of magnetite by co-precipitation method. Then, Fe3O4/TiO2 was synthesized by sol-gel manner and titanium iso propoxide (IV) as a titanium source in anatase crystalline form. In the third step, maltose was used as procedure for GQD production in hydrothermal method. So, as-synthesized photocatalyst was obtained by loading GQD on the Fe3O4/TiO2.  Then, the structural properties and quality of the nanocomposite were investigated using FT-IR, Nitrogen adsorption/desorption isotherm, FESEM and HRTEM technique. Finally, the efficiency of photocatalytic decomposition was examined affected by different independent variables.
Results and discussion: FT-IR results of naopowders and prepared photocatalyst indicated absorbance peaks of C=C, C-H, C-O, Fe–O and Ti-O-Ti bonds. Also, new peaks were appeared in 1400 and 1170 cm-1 which is related to forming the Fe–O bond between Fe in Fe3O4 and the carboxyl group in GQDs, showing the successful preparation of Fe3O4/TiO2/GQD. The specific surface area was 38 m²/g in Nitrogen adsorption/desorption isotherm. According to IUPAC classification, the isotherm curve of photocatalyst was the type IV and hysteresis loop of types due to mesoporous structure. FESEM images determined the almost spherical morphology of as-synthesized photocatalyst and homogenous distribution of TiO2­ nanoparticles on the magnetite surface that was utilized without any changes in morphology but particle size changing after loading TiO2 on the magnetite particles. HRTEM results confirmed the spherical spherical shape with less than 50 nm diameter and the lattice spacing related to anatase (TiO2) and GQDs. Also, the photocatalytic efficiency of the as-synthesized nanocomposite were measured for achieving the maximum removal of imipramine related to different variables including photocatalyst dose, pH, ambient temperature, and irradiation time. The best yield gained exceed 90% in experimental sample and about 70% in real wastewater under the optimum condition comprising photocatalyst dose of 0.5 g/L, pH ≈3, temperature ≈40 °C for 120 minutes. The reusability of the synthesized photocatalytic material investigated which was stable and active similar to primary sample and suitable for many times.
Conclusion: The results showed, the dominant mechanism of imipramine degradation was oxidative decomposition via the photogenerated holes and followed by the first-order models under the UVA light irradiation. Therefore, results proved as-prepared photocatalyst Fe3O4/TiO2/GQDs could be developed for treatment of persistence organic pollutants in industrial wastewater under optimized conditions.

کلیدواژه‌ها [English]

  • magnetic TiO2 anatase/GQDs
  • photocatalytic mineralization
  • photogeneration mechanism
  • Akpan, U.G. and Hameed, B.H., 2009. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials. 170, 520-529.
  • Alhakimi, G., Studnicki, L.H. and Al-Ghazali, M., 2003. Photocatalytic destruction of potassium hydrogen phthalate using TiO2 and sunlight: application for the treatment of industrial wastewater. Journal of Photochemistry and Photobiology A: Chemistry. 154(2-3), 219-228.
  • Boxall, A.B., 2017. Pharmaceuticals in the Environment and Human Health. In: Boxall, B.A. and Kookana, S. (Eds.), Health Care and Environmental Contamination. Elsevier, pp. 123-136.
  • Calza, P., Sakkas, V.A., Villioti, A., Massolino, C., Boti, V., Pelizzetti, E. and Albanis, T., 2008. Multivariate experimental design for the photocatalytic degradation of imipramine determination of the reaction pathway and identification of intermediate products. Applied Catalysis B: Environmental. 84, 379–388.
  • Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G., Sklaviadis T. and Poulios, I., 2008. Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Resourses. 42, 386–394.
  • Chen, Y., Sun, Z., Yang, Y. and Ke, Q., 2001. Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. Journal of Photochemistry and Photobiology A: Chemistry. 142(1), 85-89.
  • Dawson, A.H., 2004. Cyclic antidepressant drugs. In: Dart, R.C. (Eds), Medical Toxicology. Baltimore: Lippincott Williams & Wilkins. 834 – 843.
  • Ebele, A.J., Abdallah, M.A.E. and Harrad, S., 2017. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants. 3, 1-16.
  • Fernández, J., Kiwi, J., Lizama, C., Freer, J., Baeza, J. and Mansilla, H.D., 2002. Factorial experimental design of Orange II photocatalytic discolouration. Journal of Photochemistry and Photobiology A: Chemistry. 151(1–3), 213-219.
  • Gaya, U.I. and Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 9, 1-12.
  • Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Ploeg, M., Zee, S.E. and Ritsema, C.J., 2015. Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research. 3, 57-65.
  • Ghasemi, Z., Younesi, H. and Zinatizadeh, A.A., 2016. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere. 159, 552-64.
  • Godini, K., Azarian, G., Rahmani, A.R. and Zolghadrnasab, H., 2013. Treatment of waste sludge: a comparison between anodic oxidation and electro-Fenton processes. Journal of research in health sciences. 13, 188-193.
  • Guo, Q., Zhou, C., Ma, Z. and Yang, X., 2019. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Advance Materials. 31(50), 1901-1907.
  • Habibi, M.H., Hassanzadeh, A. and Mahdavi, S., 2005. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 Journal of Photochemistry and Photobiology A: Chemistry. 172, 89-96.
  • Herrmann, J.M., 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today. 53(1), 115-129.
  • Hörsing, M., Ledin, A., Grabic, R., Fick, J., Tysklind, M., la Cour Jansen, J. and Andersen, H.R., 2011. Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Resources. 45, 4470–4482.
  • Hosseini, A. and Faghihian, H., 2019. Photocatalytic degradation of benzothiophene by a novel photocatalyst, removal of decomposition fragments by MCM‑41 sorbent. Research on Chemical Intermediates. 45(4),2383-2401.
  • Huang, C.R. and Shu, H.Y., 1995. The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, UV/O3 and UV/H2O2 Journal of Hazardous Materials. 41(1), 47-64.
  • Jain, R. and Shrivastava, M., 2008. Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide. Journal of Hazardous Materials. 152(1), 216-220.
  • Kabir, M.F., Vaisman, E., Langford, C.H. and Kantzas, A., 2006. Effects of hydrogen peroxide in a fluidized bed photocatalytic reactor for wastewater purification. Chemical Engineering Journal. 118(3), 207-212.
  • Kanakaraju, D., Glass, B.D. and Oelgemöller, M., 2018. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of environmental management. 219, 189-207.
  • Kruk, M. and Jaroniec, M., 2001. Characterization of modified mesoporous silicas using argon and nitrogen adsorption. Microporous and Mesoporous Material. 44, 725-32.
  • Lajeunesse, A., Gagnon, C. and Sauvé, S., 2008. Determination of basic antidepressants and their N-desmethyl metabolites in raw sewage and wastewater using solid-phase extraction and liquid chromatography-tandem mass spectrometry. Analytical Chemistry. 80, 5325–5333.
  • Lajeunesse, A., Smyth, S.A., Barclay, K., Sauvé, S. and Gagnon, C., 2012. Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada. Water Resources. 46, 5600–5612.
  • Lee, C.M., Palaniandy, P. and Dahlan, I., 2017b. Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environmental Earth Sciences. 76(17), 611-619.
  • Li, Y., Zhang, M., Guo, M. and Wang, X., 2009. Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Metals. 28(5), 423-427.
  • Luo,  ,  Guo, W.,   Ngo, H.H.,   Nghiem, L.D.,   Hai, F.I.,  Zhang, J.,  Liang, S. and  Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment.  473, 619-641.
  • Martins, N.C.T., Ângeloa, J., Violeta Girão, A., Trindadeb, T., Andrade, L. and Mendes, A., 2016. N-doped carbon quantum dots/TiO2 composite with improvedphotocatalytic activity. Applied Catalysis B: Environmental. 193, 67–74
  • Mashkani, M., Mehdinia, A., Jabbari, A., Bide, Y. and Nabid, M.R., 2018. Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chemistry. 239, 1019-26.
  • Montazari, A., Omidvari, S., Tavousi, M., Hashemi, A. and Rostami, T., 2013. Depression in Iran: a systematic review of the literature (2000-2010). Payesh. 12, 567-594 (In Persian with English abstract).
  • Nasr, O., Mohamed, O., Al-Shirbini, A.S. and Abdel-Wahab, A.M., 2019. Photocatalytic degradation of acetaminophen over Ag, Au and Pt loaded TiO2 using solar light. Journal of Photochemistry & Photobiology A: Chemistry. 374, 185–193
  • Oller, I., Malato, S. and Sánchez-Pérez, J.A., 2011. Combination of advanced oxidation Processes and biological treatments for wastewater decontamination – A review. Science Total Environment Journal. 409, 4141-4166.
  • Polarz, S. and Smarsly, B., 2002. Nanoporous materials. Journal of Nanoscience and Nanotechnology. 2, 581-612.
  • Rahmani, A.R., Godini, K., Nematollahi, D. and Azarian, , 2015. Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation. Desalination and Water Treatment. 56, 2234-2245.
  • Ramachandran, P., Lee, C.Y., Doong, R-A., Oon, C.E., Kim Thanh, N.T. and Lee, H.L., 2020. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Advances. 10(37), 21795-21805.
  • Ribeiro, A.R., Maia, A., Santos, M., Tiritan, M.E. and Ribeiro, C.M., 2016. Occurrence of Natural Contaminants of Emerging Concern in the Douro River Estuary, Portugal. Archives of Environmental Contaminant and Toxicology. 70(2), 361- 371. 
  • Rúa-Gómez, P. and Püttmann, W., 2012. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater. Journal of Environmental Monitoring. 14, 1391–1399.
  • Saien, J. and Nejati, H., 2007. Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. Journal of Hazardous Materials. 148(1-2), 491-495.
  • Salamat, S., Younesi, H. and Bahramifar, N., 2017. Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Advance. 7, 19391–19405
  • Sarkar, S., Das, R., Choi, H. and Bhattacharjee, C., 2014. Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes – a short review. RSC Advance. 4(100), 57250-57266.
  • Shahrezaei, F., Mansouri, Y., Zinatizadeh, A.A.L. and Akhbari, A., 2012. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 Powder Technology. 221, 203-212.
  • Shen, K., Xue, X., Wang, X., Hu, X., Tian, H. and Zheng, W., 2017. One-step synthesis of bandtunable N, S co-doped commercial TiO2 /graphene quantum dots composites with enhanced photocatalytic activity. RSC Advance. 7, 23319–23327.
  • Song, S., Fan, J., He, Z., Zhan, L. Liu, Z., Chen, J. and Xu, , 2010. Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochimestry Acta. 55, 3606-3613.
  • Twesme, T.M., Tompkins, D.T., Anderson, M.A. and Root, T.W., 2006. Photocatalytic oxidation of low molecular weight alkanes: Observations with ZrO2–TiO2 supported thin films. Applied Catalysis B: Environmental. 64(3-4), 153-160.
  • Wang, S., Yi, L., Halpert, J.E., Lai, X., Liu, Y. and Cao, H., 2012. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small. 8(2), 265-271.
  • Yang, P., Zhang, S., Wan, N., Pan, W. and Shen, W., 2014. Facile synthesis and photoluminescence mechanism of graphene quantum dots. Journal of Applied Physics. 116, 2443061-2443067.
  • Yao, N., Wu, C., Jia, L., Han, S., Chi, B. and Pu, J., 2012. Simple synthesis and characterization of mesoporous (N, S)-codoped TiO2 with enhanced visible-light photocatalytic activity. Ceramics International. 38(2), 1671-1675.
  • Zhang, Y.Q., Ma, D.K., Zhang, Y.G., Chen, W. and Huang, S.M., 2013. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy. 2, 545–552.