توسعه مفهومی عامل مبنا و بهینه‌سازی مبتنی بر الگوریتم ژنتیک در تخصیص منابع آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه سیستم‌های اطلاعات مکانی، دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 مرکز مطالعات سنجش از دور و GIS، دانشکدۀ علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

سابقه و هدف:
در تخصیص منابع آب، تقسیم مناسب منابع یک اصل اساسی است، اما تعیین آن به‌دلیل وجود معیارهای مختلف مشکل است. شبیه‌سازی سامانه‌های منابع آب که بتواند عوامل مؤثر را لحاظ کند و تعامل درونی اجزاء آن را نمایان سازد، اقدامی کارآمد در بهینه کردن تخصیص منابع آب به شمار می‌آید. بررسی‌های مختلف نشان می‌دهد که شبیه‌سازی چندعاملی به تنهایی یا در تلفیق با روش‌های بهینه‌سازی به‌عنوان روشی مؤثر برای درک بهتر پیچیدگی‌های استفاده از آب و کاربران آب به کار می‌آید و الگوریتم ژنتیک نیز  یکی از روش‌های هوشمند تکاملی در بهینه‌سازی مسائل پیچیده غیرخطی است. 
مواد و روش‌ها:
چارچوب مفهومی مدل تخصیص آب پیشنهادی، تعامل عرضه و تقاضای آب با توجه به عوامل اقتصادی را در یکی از زیرحوضه‌های کویر مرکزی ارائه کرده است که مهمترین منابع آب آن را آب‌های زیرزمینی تشکیل می‌دهند. از مهمترین وظایف تخصیص‌دهنده آب، تخصیص آب به شکل بهینه به بخش‌های مختلف است. این کار با توجه به تقاضای آب موردنیاز هر یک از عامل‌های مصرف‌کننده انجام می‌شود. عامل کشاورزی که بیشترین سهم آب را به خود اختصاص می‌دهد، به قسمت‌های جزئی‌تری تقسیم می‌شود و در هر یک از محصولات به تنوع الگوی کشت، شرایط کم آبیاری و ... در جهت بهبود وضع اقتصادی و تخصیص بهینه منابع آب با توجه به داده‌ها و آمار در دسترس لحاظ می‌شود. در بخش صنعت، تولیدات و توابع آن در قالب یک تابع دربرگیرنده مجموع بنگاه‌ها مطرح می‌شود و در بخش شرب نیز، به‌دلیل اهمیت ویژه تأمین آب این بخش، کل مقدار آب مورد نیاز محاسبه و به‌طور کامل به این بخش اختصاص می‌یابد. 
نتایج و بحث:
در منطقه مورد بررسی، بر اساس معیار بیشینه کردن سود اقتصادی و با توجه به منابع آب در دسترس، کشت نباتات علوفه‌ای و روغنی بهینه نیست. از سویی دیگر، در محصولات گروه غلات، به‌دلیل کم‌آبیاری ‌و در محصولات باغی نیز به‌دلیل سودآوری بالای این محصولات سطح کشت بالا حفظ شده است و پس از غلات، درختان مثمر از قبیل: پسته، انار، انگور و خرما دارای بیشترین سطح هستند. بنابراین در بخش کشاورزی، بهره‌گیری از کم‌آبیاری در محصولات خانواده غلات و تغییر الگوی کشت با حذف محصولات دو خانواده نباتات علوفه‌ای و روغنی، منجر به بهینه شدن تخصیص آب می‌شود. در بخش صنعت، نکته حائز اهمیت، تأثیر تغییر تکنولوژی در کاهش تقاضای آب است و به‌دلیل سودآوری اقتصادی بالاتر این بخش نسبت به بخش کشاورزی، تخصیص بهینه در راستای افزایش سودآوری اقتصادی منجر به تخصیص بیشتر آب در مقایسه با مصرف فعلی شده است. از دیدگاه مدل توسعه‌یافته نیز، ارزیابی نتایج بهینه‌سازی در الگوریتم ژنتیک نشان داد که سرعت همگرایی در تکرارهای اولیه زیاد و به‌تدریج کاهش می‌یابد تا به همگرایی برسد و این همگرایی تابع بهینگی به‌تدریج حاصل می‌شود. همچنین واریانس کم تغییرات جواب نهایی الگوریتم در بازه صفر و یک، حاکی از ثبات مناسب این الگوریتم است.
 نتیجه‌گیری:
استفاده از چارچوب پیشنهادی در منطقه مورد بررسی در افزایش سودآوری اقتصادی حاصل از تخصیص بهینه منابع آب به بخش‌های مختلف تأثیرگذار است و بر اساس آن، سطح زیرکشت و میزان تخصیص آب بهینه برای مصارف مختلف تعیین شده است. نتایج حاکی از گرایش به سمت تولید محصولات باغی پربازده به جای محصولات کشاورزی کم‌بازده و تخصیص بیشتر آب به بخش صنعت است. 

کلیدواژه‌ها


عنوان مقاله [English]

Agent-based conceptual development and optimization based on a genetic algorithm in water resource allocation

نویسندگان [English]

  • Amin Hosseiniasl 1
  • Mohammad Sadi Mesgari 1
  • Ali Akbar Matkan 2
1 Department of GIS, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran
2 Remote Sensing and GIS Research Center, Faculty of Earth Science, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction:
In water resource allocation, a good division is a major principle which is difficult to determine due to the existence of different criteria. To optimize water resource allocation, it would be efficient to simulate water resource systems in order to consider effective agents and reveal the internal interaction among their parts. Various studies show that a multi-agent simulation alone, or in combination with optimization methods, is an effective approach for understanding better the complexities related to water use and users. Also, the genetic algorithm has received attention as an intelligent evolutionary method to optimize non-linear complex problems. 
Materials and methods:
The conceptual framework of the proposed water resource allocation presented the interaction between water demand and supply, taking into consideration the economic factors in a sub-basin of Dasht-e Kavir desert in Iran, whose major water source is groundwater.  One of the most important duties of water allocators is to achieve optimized allocation of water to different sectors, performed on the basis of the water demands of each consuming agent. Agricultural agents who receive the major portion of water were divided into sub-units. For each product, the diversity of cultivation patterns, deficit irrigation conditions, etc. were considered in order to improve economic status and allocate water resources optimally based on available data and statistics. In industrial uses, products and their functions were discussed as a function governing all businesses. Finally, as water supply is especially important in the drinking sector, the total volume of water required was calculated and completely allocated for this.
 Results and discussion:
In the study area, the cultivation of fodder and oil plants is not optimal on the basis of the available water resources with the criterion of maximizing economical profit. Cereals, followed by fruit-bearing trees (including pistachio, pomegranate, grape, and date) have the largest area under cultivation. Results showed that cereals retain their large cultivation area due to deficit irrigation, and the increase in the area under cultivation belonging to garden products is because of their high profitability. Therefore, in the agricultural sector, water allocation can be optimized by using deficit irrigation in cereals and changing the cultivation pattern for products relating to fodder and oil plants. In the industrial sector, the important point is the changing impact of technology on reducing water demand. Since this sector has a higher economical profitability than the agricultural sector, optimized allocation in order to increase economical profitability has led to a water allocation higher than the current consumption level. Evaluation of the optimization results in the genetic algorithm indicates that the convergence rate is high in first iterations and gradually decreases to reach convergence. The convergence of the optimization function is achieved gradually. Moreover, the small variance of changes in the final output of the algorithm (ranging from 0 to 1) suggests the high stability of this algorithm.
 Conclusion:
Implementation of the proposed framework in the study area increases the economic profitability resulting from optimized water resource allocation to various sectors, if a move is observed from low-efficiency agricultural products to high-efficiency garden products, and the higher allocation of water to industry.

کلیدواژه‌ها [English]

  • Water allocation
  • Optimization
  • Agent-based model
  1. Afshar, A., Jalali, M.R., Ghoreishi, S.M., Saed, B. and Pour Mohammad Abadi, A., 2016. Agent based models as a strategy for water resource management with sustainable development perspective. Journal of Applied Environmental and Biological Sciences. 6(2), 208-212.
  2. Akhbari, M. and Grigg, N.S., 2013. A Framework for an Agent-based model to manage water resources conflicts. Water Resour Manage. DOI 10.1007/s11269-013-0394-0
  3. Berger, B., Birner, R., D´ıaz, J., McCarthy, N. and Wittmer, H., 2007. Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manage. 21, 129–148.
  4. Doorenbos, J. and Pruitt, W.O., 1977. Guidelines for predicting crop water requirements. FAO Research Report.
  5. Habibi Davijani, M., Banihabib, M.E. and Hashemi, S.R., 2012. Development of optimization model for water allocation in agriculture, industry and service sectors by using advanced algorithm, GAPSO. Journal of Water and Soil. 27(4), 680-691.
  6. Kiafar, H., Sadradini, A.A., Nazemi, A.H. and Sanikhani, H., 2011. Optimal water allocation for Sufi-Chay irrigation and drainage network in east azerbaijan province of Iran using genetic algorithm. Water Journal. 5, 52-60.
  7. Kumar, D.N. and Reddy, J., 2007. Multi use reservoir operation using particle swarm optimization. Journal of Water Resource Planning and Management. 133(3),192-201.
  8. Kumar, D.N., Raju, K.S. and Ashok, B., 2006. Optimal reservoir operation fir of multiple crops using genetic algorithms. ASCE, Journal of Irrigation and Drainage Engineering. 132(2),123-129.
  9. Lopez, G., Larrigaudière, C., Girona, J., Behboudian, H. and Marsal, J., 2011. Fruit thinning in ‘Conference’ pear grown under deficit irrigation: implications for fruit quality at harvest and after cold storage. Scientia Horticulturae. 129, 64-70.
  10. Mashhadi Ali, A., Shafiee, M. E., Zechman Berglund, E. and Arumugam, S., 2014. An agent-based modeling approach to simulate the dynamics of water supply and water demand. World Environmental and Water Resources Congress. 1806-18011.
  11. Mirfendereski, G. and Mousavi, S.J., 2011. Support vector machines in meta-modelling for using in optimization of basin water allocation. In Proceedings Sixth Congress of Civil Engineering, Semnan Uni., Semnan, Iran.
  12. Nabinejhad, S. and Mousavi, S.J., 2011. Hydrological-based allocation of water resources at the catchment area. In Proceedings Sixth Congress of Civil Engineering, Semnan Uni., Semnan, Iran.
  13. Raju, K.S. and Kumar, N.D., 2004. Irrigation planning using genetic algorithms. J. Water Resources Management. 18(2), 163-176.
  14. Saeidian, B., Saadi Mesgari, M. and Ghodousi, M., 2015. Comparing the efficiency of GA and PSO metaheuristic algorithms in optimal allocation of water to agricultural farms in water scarcity. Engineering Journal of Geospatial Information Technology. 3(4), 19-42.
  15. Sheta, A. and Turabieh, H., 2006. A comparison between genetic algorithms and sequential quadratic programming in solving constrained optimization problems. ICGST Internatioanl Journal on Artificial Intelligence and Machine Learning (AIML). 6(1), 67-74.
  16. Sivanandam, S.N. and Deepa, S.N., 2007. Introduction to genetic algorithms. Springer Science & Business Media.
  17. Thakur , A. and Singh, Z., 2012. Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: fruit growth and concentration of sugars. Scientia Horticulturae. 135, 112-119.
  18. Wang, Z., Yang, J., Deng, X. and LAN, Xi, 2015. Optimal water resources allocation under the constraint of land use in the Heihe river basin of China. Sustainability Journal. 7, 1558-1575.
  19. Zechman Berglund, E., 2015. Using agent-based modeling for water resources planning and management. Journal of Water Resource Planning and Management. DOI: 10.1061/(ASCE)WR.1943-5452.0000544.