شناسایی الگوهای جوی مولد سیلاب و شبیه‌سازی تبدیل بارش به رواناب در محدوده مطالعاتی شیراز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه برنامه ریزی محیط زیست، پردیس کیش، دانشگاه تهران، کیش، ایران

2 گروه برنامه‌ریزی، مدیریت و آموزش محیط زیست، دانشکده محیط زیست، دانشگاه تهران، کرج، ایران

چکیده

سابقه و هدف: سیلاب ناشی از افزایش ناگهانی ارتفاع آب رودخانه به­ دلیل وقوع بارندگی شدید است. آب اضافه از دبی پایه و بستر رودخانه خارج شده و وارد محیط مجاور می­ شود که باعث می­ شود خسارت­ های هنگفتی به اکوسیستم ­ها و زیرساخت­ های منطقه در دشت­ های سیلابی  وارد شود. به­ منظور تدوین برنامه ­ی راهبردی در مسیر مدیریت بحران، شناخت سازوکار و تکوین پدیده ­ی سیلاب و میزان رواناب ایجادشده ناشی از آن در اولویت قرار دارد. طی سال­ های اخیر، سیلاب­ های فراوانی در حوضه آبریز رودخانه خشک شیراز اتفاق افتاده است. مهیب ­ترین سیلاب منطقه در روزهای 5 و 6 فروردین­ ماه 1398 در حوضه رخ داد و خسارت­ های اقتصادی- اجتماعی و جانی شدیدی بر منطقه و مردم شهر وارد ساخت. با شناخت سازوکارها و تکوین الگوهای اتمسفری مولد سیلاب، می­ توان اولین گام را در مهار سیلاب برداشت و همچنین با پیش ­بینی میزان رواناب تولید شده، نحوه­ ی مقابله با آن را تشخیص داد. به­ همین دلیل پژوهش حاضر در راستای مدیریت محیط ­زیستی حوضه ­ی آبخیز رودخانه خشک شیراز، سعی در رهیافت مدیریت سیلاب بر مبنای شناخت الگوهای مولد سیلاب و شبیه ­سازی میزان رواناب تولید شده را دارد.
مواد و روش­ ها: به­ منظور بررسی ویژگی ­های بارش در محدوده ­ی مطالعاتی رودخانه خشک شیراز، میزان بارش روزانه از 12 ایستگاه باران­ سنجی در محدوده طی بازه ­ی زمانی 2001 تا 2019 به ­دست آمد. سپس بارش ­ها در مقیاس سالانه و ماهانه مرتب­ شد و در محیط پردازشی ArcGIS، پهنه ­بندی بارش با الگوریتم کریجینگ انجام شد. همچنین بارش­ های بیش از 40 میلی­ متر از 12 ایستگاه باران­ سنجی استخراج گردید و به ­عنوان روزهای سیلابی درنظر گرفته شد. برای هر ایستگاه باران­ سنجی، تعداد روزهای سیلابی تعیین شده و در محیط ArcGIS، پهنه ­بندی روزهای سیلابی با الگوریتم کریجینگ انجام شد.  سپس، سه وقوع سیلاب در روزهای 16 فوریه 2017، 26 مارس 2019 و 23 ژانویه 2020 که در هر سه روز، میانگین بارش در محدوده­ ی مطالعاتی شیراز، 100 میلی­ متر بود، انتخاب شده و با رویکرد سینوپتیکی، اندرکنش ­های جوی و الگوهای مولد سیلاب شناسایی گردید. سپس با استفاده از مدل هیدرولوژیکی HEC-HMS میزان تبدیل بارش به رواناب در هر یک از زیرحوضه­ های موجود در محدوده مطالعاتی شیراز شبیه ­سازی شد.
نتایج و بحث: نتایج نشان داد که بیشینه­ ی بارش در فوریه و  کمینه ی آن در جولای رخ می ­دهد. بیشینه ­ی بارش سالانه در مناطق کوهستانی قلات و گلستان با 627 میلی­ متر و کمینه ­ی آن در مهارلو به میزان 245 میلی­متر است. نتایج سینوپتیکی نشان داد که استقرار ناوه­ ی کم ­ارتفاع و سردچال جوی تراز 500 هکتوپاسکال در شرق مدیترانه به همراه استقرار سیستم کم ­فشار دینامیکی ایران موجب ناپایداری هوای سطحی در استان فارس شده و با تزریق رطوبت از خلیج­ فارس به توده­ ی هوا، موجب وقوع  بارش های سیلابی در شیراز شده است. نتایج مدل­ سازی بارش- رواناب نشان داد که بیشترین میزان رواناب در زیرحوضه ­های صدرا و قلات به­ ترتیب 5773 و 5076 هزارمترمکعب بود و بیشینه­ ی دبی پیک نیز در صدرا و قلات به­ ترتیب 666 و 389 مترمکعب در ثانیه بود که طی ساعت 17:00 اتفاق افتاد. بیشترین حجم نفوذ بارش در قلات و چنار راهدار به ­ترتیب 5423 و 2546 هزارمترمکعب بود و کمترین میزان نفوذ در دروازه قران با 247 هزارمترمکعب بود که دلیل اصلی آن تراکم بالای کاربری مسکونی- تجاری در این زیرحوضه است.
نتیجه ­گیری: پیشنهاد می­ گردد که به­ منظور مدیریت بحران سیلاب در شیراز، مدیریت رواناب ­های تولیدشده در زیرحوضه ­های شمالی همچون قلات، گلستان و صدرا و استفاده از الگوهای مناسب مدیریت رواناب مانند زیرساخت­ های سبز و آبی می­ تواند در مهار سیلاب کارساز باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of flood atmospheric patterns and simulation of rainfall to runoff conversion in Shiraz Watershed

نویسندگان [English]

  • Hamid Jorkesh 1
  • Mohammad Javad Amiri 2
  • Ahmad Nohegar 2
1 Department of Environmental planning, Kish Campus, University of Tehran, Kish, Iran
2 Department of planning, Management and Environmental Education, Faculty of Environment, Tehran, Iran
چکیده [English]

Introduction: Flood is caused by a sudden increase in the water level of a river due to heavy rainfall, in which excess water flows out of the basin and the riverbed and enters adjacent areas, causing extensive damage to the region's ecosystems and infrastructure. In order to determine and implement a strategic plan in the direction of crisis management, understanding the mechanism and development of the flood phenomenon and the amount of subsequent runoff is a priority. In recent years, flood events have occurred in the catchment area of ​​the dry river of Shiraz; The most terrible flood event occurred on the 25th and 26th of March 2019 in the basin and caused severe economic, social and human damage to the people of the city. By recognizing the mechanisms and developing atmospheric patterns of flood generation, the first step can be taken in flood control; Also, by predicting the amount of runoff produced, how to deal with it can be identified. For this reason, in order to manage the environment of the dry river basin of Shiraz, the present study tries to approach flood management based on recognizing flood generating patterns and simulating the amount of runoff produced.
Material and Methods: In order to study rainfall in the dry river of Shiraz, the daily rainfall was obtained from 12 rain gauge stations in the area in the period 2001 to 2019. The rainfalls were then sorted on an annual and monthly scale, and the rainfall was zoned using the Kriging algorithm in ArcGIS. Also, rainfalls of more than 40 mm were extracted from 12 rain gauge stations and were considered as flood events. For each rainfall station, the number of flood events was determined and flood events were zoned by the kriging algorithm in ArcGIS. Next, three events of flood on 16 February 2017, 26 March 2019 and 23 January 2020, when the average rainfall in the Shiraz watershed was 100 mm every three days, were selected and interacted with a synoptic approach. Atmospheric conditions and flood patterns were identified. Next, using the HEC-HMS hydrological model, the amount of rainfall to runoff conversion in each of the sub-basins in the Shiraz watershed was simulated.
Results and Discussion: The results showed that the maximum precipitation occurs in February and the minimum in July. The maximum annual rainfall is 627 mm in the mountainous areas of Qalat and Golestan and the minimum is 245 mm in Maharloo Lake. Synoptic results showed that the low altitude and cold-water trough at the level of 500 hPa in the eastern Mediterranean along with the dynamic low-pressure system in Iran caused surface air instability in Fars Province and by injecting moisture from the Persian Gulf to the massif. The weather has caused floods in Shiraz. The results of rainfall-runoff modeling showed that the highest runoff in Sadra and Qalat sub-basins were 5773 and 5076 thousand m3, respectively, and the maximum peak discharge in Sadra and Qalat was 666 and 389 m3/sec, respectively. It happened at 17:00. The highest volume of rainfall penetration in Qalat and Chenar Rahdar was 5423 and 2546 thousand m3, respectively, and the lowest level of penetration in the Quran Gate was 247 thousand m3, the main reason being the high density of residential-commercial use in this sub-basin.
Conclusion: Therefore, it is suggested that in order to manage the flood crisis in Shiraz, controlling runoff produced in northern sub-basins such as Qalat, Golestan and Sadra and increasing the level of permeability can be effective in controlling floods.

کلیدواژه‌ها [English]

  • Cut of low
  • flood
  • HEC-HMS
  • runoff
  • Shiraz
Ahmadi, M. and Jafari, F., 2015. Analysis of super heavy rainfall of march  2014 causing destructive flooding in the township of Bandar Abbas. Iranian Journal of Hazards Science. 2(3), 307-324. https://doi.org/10.22059/jhsci.2015.56069.
Ai, Y. and Qian, W., 2020. Anomaly-based synoptic analysis on the heavy rain event of July 2018 in Japan. Natural Hazards. 1-18. https://doi.org/10.1007/s11069-020-03888-y.
Ajayamohan, R.S., Merryfield, W.J. and Kharin, V.V., 2010. Increasing trend of synoptic activity and its relationship with extreme rain events over central India. Journal of Climate. 23(4), 1004-1013. http://dx.doi.org/10.1175/2009JCLI2918.1.
Alijani, B., Khosravi, M. and Esmailnejad, M., 2010. A Synoptic Analysis of January 2008. Heavy Precipitation in the Southeast of Iran. Journal of Climate Research. 1(3–4), 3–14. https://sid.ir/paper/213093/fa
Alizadeh, A., 2016. Principles of Applied Hydrology, Imam Reza University, 40, 942. Iran.
Almazroui, M. and Awad, A.M., 2016. Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmospheric Research.http://dx.doi.org/10.1016/j.atmosres.2016.05.015.
Al‐Nassar, A.R., Pelegrí, J.L., Sangrà, P., Alarcon, M. and Jansa, A., 2020. Cut off low systems over Iraq: Contribution to annual precipitation and synoptic analysis of extreme events. International Journal of Climatology. 40(2), 908-926.https://doi.org/10.1002/joc.6247
AL-Shouhani, H.J., 2020. A Comparative Study Between Short Life-Cut off Low and Long Life-Cut off Low Accompanied by Heavy Precipitation Storms Over Iraq: Case Study. Al-Mustansiriyah Journal of Science. 31(2), 1-14.https://doi.org/10.23851/mjs.v31i2.755.
Armon, M., Dente, E., Smith, J.A., Enzel, Y. and Morin, E., 2018. Synoptic-scale control over modern rainfall and flood patterns in the Levant drylands with implications for past climates. Journal of Hydrometeorology. 19(6), 1077-1096.‏ https://doi.org/10.1175/JHM-D-18-0013.1.
Azizi, G., Nayeri, M. and Rostami, J.S., 2009. Synoptic analysis of heavy precipitation in west of Iran. Journal of Physical Geography. 1(4), 1-13. https://www.sid.ir/en/journal/ViewPaper.aspx?id=193483
Boughton, W.C., 1989. A review of the USDA SCS curve number method. Soil Research. 27(3), 511-523.‏ https://doi.org/10.1071/SR9890511.
Cowles, A., Willson, C. and Twilley, R., 2019. Effects of Land-Use Change (1938–2018) on Surface Runoff and Flooding in the Amite River Basin, Louisiana, USA Using Coupled 1D/2D HEC-RAS–HEC-HMS HydrologicalModeling. https://ui.adsabs.harvard.edu/link_gateway/2020esoar.10501755C/doi:10.1002/essoar.10501755.1.
Daliran Firouz, H., Mokhtari, F., Soltani, S. and Mousavi, S.A., 2016. Flood Damage Assessment in Ghamsar and Ghohrood Watershed Basins Using HEC-FIA. Journal of Water and Soil Science. 19(74), 63-76. http://dx.doi.org/10.18869/acadpub.jstnar.19.74.6
Derafshi, Kh., Khaledi, Sh., Shaebaninia, H. and Mehrjoonezhad, A., 2016. The study of land use changes and modeling of precipitationrunoff using HEC-HMS model, Case Study: Babolrood basin. Environmental Erosion Research. 4(20), 30-44. http://dorl.net/dor/20.1001.1.22517812.1394.5.4.1.3
Dezfuli, A., 2020. Rare atmospheric river caused record floods across the Middle East. Bulletin of the American Meteorological Society. 101(4), 394-400. https://doi.org/10.1175/BAMS-D-19-0247.1
Esfandiari, N. and Lashkari, H., 2020. Identifying atmospheric river events and their paths into Iran. Theoretical and AppliedClimatology.140, 1125-1137. https://link.springer.com/article/10.1007/s00704-020-03148-w.
Garner, M., Sebastian, A., Hakkenberg, C.R., Juan, A., Gori, A. and Bedient, P.B., 2019. Integrating Annual Landsat Imagery in a Hydrologic Impact Analysis of Localized Land Use Change for a Rapidly Developing Watershed in Houston, Texas. American Geophysical Union, Fall Meeting ,  2019AGUFM.H53L1943G
Ghasemifar, E., Naserpour, S. and Arezomandi, L., 2017. Analysis of synoptic patterns reated to extereme precipitation over west of Iran. Journal of Spatial Analysis Environmental Hazards. 4 (2), 69-86. http://jsaeh.khu.ac.ir/article-1-2717-en.html
Jadhav, S.K., 2002. Summer monsoon low pressure systems over the Indian region and their relationship with the sub-divisional rainfall. Mausam. 53(2), 177-186. DOI: https://doi.org/10.54302/mausam.v53i2.1633.
Jahanbakhsh Asl, S., Rezaee Banafsheh, M., Rostamzadeh, H. and Aalinejad, M.H., 2018. Continuous Simulation of Rainfall-Runoff of Shahrchay Basin of Urmia Using HEC-HMS Model. Journal of  HYDROGEOMORPHOLOGY. 4 (16), 101-118. https://dorl.net/dor/20.1001.1.23833254.1397.5.16.6.4.
James, W.P., Winsor, P.W. and Williams, J.R., 1987. Synthetic unit hydrograph. Journal of Water Resources Planning and Management. 113(1), 70-81. https://doi.org/10.1061/(ASCE)0733-9496(1987)113:1(1)
Kabeja, C., Li, R., Guo, J., Rwabuhungu, D., Manyifika, M., Gao, Z.,Wang,V. and Zhang,Y., 2019. The Impact of Reforestation Induced Land Cover Change (1990-2017) on Flash Flood Peak Discharge Using HEC-HMS Hydrological Model and Satellite Observations: A study in Data Scarce Tributary of Sichuan Basin, China. AGUFM, 2019, H13K-1868. https://doi.org/10.3390/w12051347.
Kang, Y., Peng, X., Wang, S., Dong, C., Shang, K. and Zhao, Y., 2020. Statistical characteristics and synoptic situations of long‐duration heavy rainfall events over North China. Earth and Space Science. 7(5), e2019EA000923. https://doi.org/10.1029/2019EA000923.
Kiani, M., Lashkari, H. and Ghaemi, H., 2019. The effect of Zagros Mountains on rainfall changes of Sudanese low pressure system in western Iran. Modeling Earth Systems and Environment. 5(4), 1769-1779.
 https:// doi.org/10.1007/s40808-019-00631-w.
Kilavi, M., MacLeod, D., Ambani, M., Robbins, J., Dankers, R., Graham, R., Titly, H., Salih, A.M. and Todd, M.C., 2018. Extreme rainfall and flooding over central Kenya including Nairobi city during the long-rains season 2018: causes, predictability, and potential for early warning and actions. Atmosphere. 9(12), 472. https://doi.org/10.3390/atmos9120472.
Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D. and Mohanty, U.C., 2008. Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society. 134(636), 1897-1910. https://doi.org/10.1002/qj.325.
MahmodAbadi, M., Omidvar, K., Narangifard, M. and Fatemi, M., 2016. Synoptic analysis of the effects of blocking phenomenon on torrential rainfall in the southern of Iran of April 2013. Journal of Climate Research. 1395(25), 67-82. https://doi.org/10.22067/geo.v3i2.26653.
Mel, R.A., Viero, D.P., Carniello, L. and D’Alpaos, L., 2020. Optimal floodgate operation for river flood management: The case study of Padova (Italy). Journal of Hydrology: Regional Studies. 30, 100702.‏ https://doi.org/10.1016/j.ejrh.2020.100702.
Nazemosadat, S.M.J. and  Shahgholian K., 2014. Formation of Heavy Precipitation in southwestern Part of Iran and its Association with the ‎Madden-Julian Oscillation.  Journal of Water and Soil. 28(5), 1072-1083. https://doi.org/10.22067/jsw.v0i0.28595.
Nazemosadat, M.J. and Shahgholian, K., 2017. Heavy precipitation in the southwest of Iran: association with the Madden–Julian Oscillation and synoptic scale analysis. Climate Dynamics. 49(9-10), 3091-3109. https://link.springer.com/article/10.1007/s00382-016-3496-6.
O'Donnell, E.C. and Thorne, C.R., 2020. Drivers of future urban flood risk. Philosophical Transactions of the Royal Society A, 378(2168), 20190216.‏ https://doi.org/10, 1098/rsta.2019,0216.
Panegrossi, G., Marra, A.C., Sanò, P., Baldini, L., Casella, D. and Porcù, F., 2020. Heavy precipitation systems in the Mediterranean area: The role of GPM. In Satellite Precipitation Measurement (pp. 819-841). Springer, Cham.http://dx.doi.org/10.1007/978-3-030-35798-6_18.
Pazhooh, F. and Jafari F., 2019. Synoptic analysis of heavy and hazardous precipitations in western and south western Iran during the first ten days of April 2019. Scientific-Research Quarterly of Geographical Data (SEPEHR), 29(114), 165-184. https://doi.org/10.22131/sepehr.2020.44600.
Qiu, L., Du, Z., Zhu, Q. and Fan, Y., 2017. An integrated flood management system based on linking environmental models and disaster-related data. Environmental Modelling and Software. 91, 111-126.‏ https://doi.org/10, 1016/j.envsoft.2017, 01,025.
Rahimzadeh Z. and Habibi M., 2018. Simulation of hydrograph of flood with hydrological model HEC-HMS and prediction of return period in Kermanshah Ravansar Basin. Geography and Development Iranian Journal. 16(53), 175-194 .https://doi.org/10.22111/gdij.2018.4186.
Rostamzad G., Khalighi Sigaroodi, Sh. and Mahdavi, M., 2013. Comparison estimate precipitation loss methods in HEC-HMS model to simulation runoff (Case study: Kan basin). Journal of Range and Watershed Management. 66(3), 359-371. https://doi.org/10.22059/jrwm.2013.36513.
Rousta, I., Karampour, M., Doostkamian, M., Olafsson, H. , Zhang, H., Mushore, T.D., Shiri Karimvandi, A., and Vargas, E.R.M., 2020. Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arabian Journal of Geosciences. 13(2), 1-16. https://doi.org/10.1007/s12517-020-5101-x.
Schilling, K.E., Gassman, P.W., Kling, C.L., Campbell, T., Jha, M.K., Wolter, C.F. and Arnold, J.G., 2014. The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes. 28(8), 3314-3325. http://dx.doi.org/10.1002/hyp.9865
 ‏Seluchi, M.E. and Chou, S.C., 2009. Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theoretical and Applied Climatology. 98(1-2), 67-77.http://dx.doi.org/10.1007/s00704-008-0101-x.
Shen, Y., Morsy, M.M., Huxley, C., Tahvildari, N. and Goodall, J.L., 2019. Flood risk assessment and increased resilience for coastal urban watersheds under the combined impact of storm tide and heavy rainfall. Journal of Hydrology. 579, 124159. https://doi.org/10.1016/j.jhydrol.2019.124159
Shestakova, A. A. and Toropov, P.A., 2020. Orographic and lake effect on extreme precipitation on the Iranian coast of the Caspian Sea: a case study. Meteorology and Atmospheric Physics. https://doi.org/10.1007/s00703-020-00735-4.
Singh, S.V., Mooley, D.A. and Kripalani, R.H., 1978. Synoptic climatology of the daily 700 mb summer monsoon flow patterns over India. Monthly Weather Review. 106(4), 510-525. https://doi.org/10.1175/1520-0493(1978)106%3C0510:SCOTDM%3E2.0.CO;2.
Stoleriu, C.C., Urzica, A. and Mihu‐Pintilie, A., 2020. Improving flood risk map accuracy using high‐density LiDAR data and the HEC‐RAS river analysis system: A case study from north‐eastern Romania. Journal of Flood Risk Management. 13, 12572. https://doi.org/10.1111/jfr3.12572.
Tang, Z., Engel, B.A., Pijanowski, B.C. and Lim, K.J., 2005. Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management. 76(1), 35-45. https://doi.org/10.1016/j.jenvman.2005.01.006.
Teixeira, M.S. and Satyamurty, P., 2007. Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Monthly Weather Review. 135(2), 598-617. https://doi.org/10.1175/MWR3302.1.
Tymvios, F., Savvidou, K. and Michaelides, S.C., 2010. Association of geopotential height patterns with heavy rainfall events in Cyprus. Advances in Geosciences. 23, 73-78. https://doi.org/10.5194/adgeo-23-73-2010, 2010.
Wang, Y., Chen, A.S., Fu, G., Djordjević, S., Zhang, C. and Savić, D.A., 2018. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environmental Modelling and Software. 107, 85-95. https://doi.org/10.1016/j.envsoft.2018.06.010‏.
Wu, L., Huang, R., He, H., Shao, Y. and Wen, Z., 2010. Synoptic characteristics of heavy rainfall events in pre-monsoon season in South China. Advances in Atmospheric Sciences. 27(2), 315-327. https://doi.org/10.1007/s00376-009-8219-z.
Wu, S., Jang, J., Wu, T., Lin, J. and Li, B., 2019. An evaluation of the flood diversion project d Junaidi ue to extreme rainfall event in Taipei City. In IOP Conference Series: Materials Science and Engineering. 615(1),  012061). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/615/1/012061.
Yin, M.T., 1949. Synoptic-aerologic study of the onset of the summer monsoon over India and Burma. Journal of Meteorology. 6(6), 393-400 .https://doi.org/10.1175/1520-0469(1949)006%3C0393:SASOTO%3E2.0.CO;2.