طراحی شبکه پایش کیفی آب‌های زیرزمینی با استفاده از روش بهینه‌سازی الگوریتم ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

سابقه و هدف:
توزیع مکانی و دقت داده­های کیفی در مدیریت منابع آب زیرزمینی ضروری است. معمولا این داده­ها از چاه­های پایش جمع­آوری می­شود که به صورت مکانی در حوضه آبریز یا آبخوان مورد مطالعه توزیع شده است. در طراحی شبکه پایش، حداقل تعداد چاه­های پایش با توزیع مکانی بهینه و مناسب از نظر اقتصادی مورد نیاز است. بنابراین نحوه توزیع چاه­ها و تعداد آن­ها در طراحی شبکه پایش کیفی یکی از موارد مهم در بهینه­سازی مسائل مربوط به آب زیرزمینی است. هدف از این مطالعه، یافتن شبکه پایش بهینه با حداقل تعداد چاه­ها در آبخوان دشت گیلان است، به­طوری­که، توزیع مکانی مناسبی از نظر پارامترهای کیفیت آب زیرزمینی داشته باشد. با توجه به اینکه یکی از مهمترین معیارهای کیفیت آب زیرزمینی شوری است که با پارامترهایی مانند کل جامدات محلول (TDS)، یون کلر (Cl) و هدایت الکتریکی (EC) اندازه­گیری می­شود، در این مطالعه پارامتر EC به عنوان پارامتر کیفی در طراحی شبکه پایش انتخاب گردید.
مواد و روش­ها:
برای جستجوی بهینه شبکه پایش کیفی از الگوریتم بهینه­سازی ژنتیک (GA) استفاده شد. در این روش، یک شبکه ممکن از چاه­های پایشی که در منطقه واقع شده است به عنوان یک کروموزوم در نظر گرفته می­شود و هر چاه پایش، ژن­های کروموزوم هستند که با ساختار دودویی (صفر و یک) کدگذاری می­شوند. در صورتی­که انتخاب شود یک و در غیر این صورت صفر خواهد بود. در این مطالعه همزمان دو تابع هدف متضاد حل می­شود. هدف اول حداکثر کردن تطابق (برازش) بین توزیع­های EC محاسبه شده در شبکه پایش موجود و شبکه جدید است. که این تطابق با استفاده از کارایی مدل نش ساتکلیف ارزیابی می­شود. هدف دوم نیز با در نظر گرفتن محدودیت مربوط به هزینه، حداقل کردن تعداد چاه­های پایش در شبکه جدید ایجاد شده می­باشد. این دو هدف در یک تابع هدف تعریف می­شود که در آن ترکیب­های مختلفی از دو هدف با اعمال ضریب وزنی w مورد بررسی قرار می­گیرد.
نتایج و بحث:
نتایج ارزیابی­ها نشان داد که انتخاب جواب بهینه تا حد زیادی به تعیین ضریب وزنی w بستگی دارد. بنابراین باید مقدار w را با توجه به متعادل­ترین جواب انتخاب شود. متعادل­ترین جواب به این معناست که بین هزینه و پراکنش مکانی چاه­ها در منطقه یک رابطه قابل قبولی برقرار باشد. در ادامه، برای انتخاب بهترین جواب بهتر است علاوه بر استفاده از ضریب کارایی نش ساتکلیف از شاخص­های عملکرد دیگری مانند PBIAS، RMSE، ضریب رگرسیون و انحراف معیار نیز استفاده شود. به طور کلی، نتایج بدست آمده در این مطالعه با توجه به این شاخص­ها قابل قبول بوده است. همچنین، بررسی توزیع مکانی و مقایسه میانگین مقادیر EC مشاهده شده در منطقه و EC محاسبه شده در شبکه بهینه با توجه به همه چاه­های پایش انتخاب شده نشان می­دهد که مقادیر بهینه­شده بزرگتر از میانگین مقادیر مشاهده شده در منطقه است. بنابراین به وضوح نتیجه­گیری می­شود که شبکه بهینه­شده داده­های کیفی آب زیرزمینی مناطق آلوده­تر را فراهم می­کند.
نتیجه­ گیری:
نتایج نشان داد که کاربرد روش بهینه­سازی به طور قابل ملاحظه­ای تعداد چاه­های پایش را با توجه به توزیع مکانی مقادیر EC کاهش می­دهد. علاوه بر این، شبکه پایش طوری طراحی شد که تعداد نقاط نمونه­برداری در مناطق با آلودگی کمتر، حذف شد و در مناطقی با آلودگی بیشتر، اضافه شد. در طراحی شبکه پایش کیفی آب زیرزمینی بهتر است به صورت دوره­ای بهینه­سازی انجام شود، زیرا انتظار می­رود کارایی شبکه پایش با اضافه شدن چاه­های جدید به شبکه تغییر کند. ارزیابی­های پی در پی شبکه پایش به صورت هر چند سال یک بار، در تعیین ارزیابی درازمدت کیفیت آب زیرزمینی و عوامل موثر در آن کمک می­کند که می­تواند در برنامه­ریزی و اعمال روش­هایی برای بهبود کیفیت آب زیرزمینی موثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Design of the optimal groundwater quality monitoring network using a genetic algorithm based optimization approach

نویسندگان [English]

  • Somaye Janatrostami
  • Ali Salahi
Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran
چکیده [English]

Introduction:
A spatial distribution and accuracy of groundwater quality data is required for management of groundwater resources. These data are usually collected from monitoring wells which are spatially distributed in the studied aquifer. In the design of the monitoring network, the minimum number of monitoring wells with an optimum spatial distribution is necessary to ensure a cost efficiency. Therefore, the configuration of the wells distribution and their number in groundwater monitoring networks are an important problem for optimizing groundwater issues. This study was targeted to find an optimal monitoring network with minimum number of wells in the Guilan’s aquifer so that provides sufficient spatial distribution on groundwater quality. Salinity is one of the most important criteria for the quality of groundwater which is measured by using of parameters such as Total Soluble Solids (TDS), Chloride ion (Cl) and Electrical Conductivity (EC). Hence, EC was selected as a quality parameter in the design of the monitoring network in this study.
Materials and methods:
Genetic optimization algorithm (GA) was used to search for optimal quality monitoring network. In this method, a possible network of monitoring wells located in the aquifer considered for each “chromosome”. Then each monitoring well in this network is represented by a binary bit. Finally, they are coded by bit value equals to 1 for well that was selected for the network or by bit value equals to 0 for well that was not selected for the network. In this paper, two conflicting objective functions are simultaneously solved. The first objective function is the maximization of the match between the interpolated EC distributions obtained from data of the all available monitoring wells and the wells from the newly generated network. The match is evaluated by using of the Nash-Sutcliffe (NS) model efficiency. The second objective is the minimization of the number of the monitoring wells in the newly generated network by considering cost-related constraints. These two objectives are integrated in a single objective function where different combinations of both objectives are investigated by considering two cases.
Results and discussion:
The results showed that the relative importance of each objective is expressed using the weighting coefficient, w. It was found that the solution of the optimization is very dependent on the selection of w. Therefore, a w value that are resulted by the most balanced solution should be selected. Most balanced means that the trade-off between cost and spatial distribution is most acceptable. To choose the most solution, it is highly recommended to evaluate additional performance indicators besides NS coefficient such as RMSE, PBIAS, the regression coefficient and standard deviation. Additionally, mean values of EC observed in the optimized network are higher than those in all monitoring wells. Therefore, it could be clearly concluded that the optimized network provides groundwater quality data from more polluted areas.
Conclusion:
The results showed that the optimization approach significantly reduces the number of monitoring wells with spatial distribution of the EC values. Additionally, the monitoring network was optimized such a way that sampling points were removed from less polluted areas and were selected in areas with higher pollutant concentrations. The optimal design of the monitoring network should be performed periodically. Since monitoring efficiency is expected to change when the data of the new wells become available, a re-evaluation of the optimized monitoring network considering the addition of new wells every few years may help the determination of the long-term effectiveness of a groundwater quality monitoring program.

کلیدواژه‌ها [English]

  • Quality Management
  • Monitoring network
  • Groundwater
  • Optimization
  • Genetic algorithm
  1. Aboutalebi, M., Bozorg-Haddad, O. and Loaiciga, H.A. 2016. Multiobjective Design of Water-Quality Monitoring Networks in River-Reservoir Systems. Journal of Environmental Engineering. 143, 04016070.
  2. Al-Zahrani, M.A. and Moied, K. 2003. Optimizing water quality monitoring stations using genetic algorithms. Arabian Journal for Science and Engineering. 28, 57–75.
  3. Arora, J.S. 2004. Introduction to Optimum Design. Elsevier Academic Press, San Diego, CA.
  4. Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M. and Khalil, A. 2004. Support vectors-based groundwater head observation networks design. Water Resources Research. 40, W11509.
  5. Ayvaz, M.T. and Elçi, A. 2018. Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach. Journal of Hydrology. 563,1078–109.
  6. Baalousha, H. 2010. Assessment of a groundwater quality monitoring network using
  7. vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New
  8. Zealand. Agricultural Water Management. 97, 240–246.
  9. Barca, E., Bruno, DE., Lay-Ekuakille, A., Maggi, S. and Passarella, S. 2018. Retrospective analysis: A validation procedure for the redesign of an environmental monitoring network. Measurement. 113, 211-219.
  10. Bashi-Azghadi, S.N. and Kerachian, R. 2010. Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Science of the Total Environment. 408, 2189–2198.
  11. Bateni, S.M. Mortazavi-Naeini, M. Ataie-Ashtiani, B. Jenga, D.S. and Khanbilvardifi, R. 2015. Evaluation of methods for estimating aquifer hydraulic parameters. Applied Soft Computing. 28, 541-549.
  12. Chadalavada, S. and Datta, B. 2008. Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers. Water Resources Management. 22, 651–670.
  13. Cieniawski, S.E., Eheart, J.W. and Ranjithan, S. 1995. Using genetic algorithm to solve a multiobjective roundwater monitoring problem. Water Resources Research. 31, 399–409.
  14. Datta, B., Chakrabarty, D. and Dhar, A. 2009. Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources. Water Resources Managment. 23, 2031–2049.
  15. Dhar, A. and Datta, B., 2010. Logic-Based Design of Groundwater Monitoring Network for Redundancy Reduction. journal of water resources planning and management. 136, 88–94.
  16. Dhar, A. and Patil, R. S. 2012. Multiobjective design of groundwater monitoring network under epistemic uncertainty. Water Resources Management 26, 1809–1825.
  17. Dieng, N.M., Orban, P., Otten, J., Stumpp, C., Faye, S. and Dassargues, A. 2017. Temporal changes in groundwater quality of the Saloum coastal aquifer. Journal of Hydrology. 163, 163-182.
  18. Fisher, J.C. 2013. Optimization of water-level monitoring networks in the eastern Snake
  19. River Plain aquifer using a kriging-based genetic algorithm method. U.S. Geological
  20. Survey Scientific Investigations Report 2013-5120 (DOE/ID-22224), Reston, VA.
  21. Ganji-Khorramdel, N. and Keykhaei, F. 2017. Optimal Design of Obsevation Wells in a Groundwater Monitoring Network Using Meta-Heuridtic Genetic Algorithm. Journal of watershed management research. 7, 159-166.
  22. Guo, Y., Wang, J.F. and Yin, X.L. 2011. Optimizing the groundwater monitoring network using MSN theory. Procedia - Social and Behavioral Sciences. 21, 240–242.
  23. Holland, J. 1973. Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on Computing. 2, 88-105.
  24. Khader, A. and McKee, M. 2014. Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty. Environmental Modelling & Software. 57, 115-126.
  25. Kim, K.H. and Lee, K.K. 2007. Optimization of groundwater-monitoring networks for identification of the a
  26. Loaiciga, H.A., Charbeneau, R.J., Everett, L.G. and Fogg, G.E. 1992. Review of ground-water quality monitoring network design. Journal of Hydraulic Engineering. 118, 11–37.
  27. Luo, Q., Wu, J., Yang, Y., Qian, J. and Wu, J. 2016. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. Journal of Hydrology. 534, 352-363.
  28. McKinney, D.C. and Lin, M.D. 1994. Genetic algorithm solution of groundwater management
  29. models. Water Resources Research. 30, 1897–1906.
  30. McLean, M.I., Evers, L., Bowman, A.W., Bonte, M. and Jones, W.R. 2019. Statistical modelling of groundwater contamination monitoring data: A comparison of spatial and spatiotemporal methods. Science of The Total Environment. 652, 1339-1346.
  31. Mirzaie-Nodoushan, F., Bozorg-Haddad, O. and Loaiciga, H.A. 2017. Optimal design of groundwater-level monitoring networks. Journal of Hydroinformatics. 19, 920-929.
  32. Mogheir, Y., de Lima, J.L.M.P. and Singh, V.P. 2009. Entropy and Multi-Objective Based Approach for Groundwater Quality Monitoring Network Assessment and Redesign. Water Resources Management. 23, 1603-1620.
  33. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L.
  34. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers. 50, 885–900.
  35. Raynauld, M., Peel, M., Lefebvre, R., Molson, J.W., Crow, H., Ahad, J.M.E., Ouellet, M. and Aquilina, L. 2016. Understanding shallow and deep flow for assessing the risk of hydrocarbon development to groundwater quality. Marine and Petroleum Geology. 78, 728-737.
  36. Rosen, M.R. 1997. The National Groundwater Monitoring Network (NGMP): tructure, implementation and preliminary results. Institute of Geological and Nuclear Sciences Limited. 47p.
  37. Santhi, C., Arnold, J.G., Williams, J.R., Dugas, W.A., Srinivasan, R. and Hauck, L.M. 2001.
  38. Validation of the SWAT Model on a Large River Basin with Point and Nonpoint
  39. Sources. Journal of the American Water Resources Association. 37, 1169–1188.
  40. Singh, J., Knapp, H.V. and Demissie, M. 2004. Hydrologic modeling of the Iroquois River
  41. watershed using HSPF and SWAT. ISWS CR 2004-08. Champaign, Ill.: Illinois State
  42. Water Survey.
  43. Van Liew, M.W., Arnold, J.G. and Garbrecht, J.D. 2003. Hydrologic simulation on agricultural watersheds: choosing between models. Trans. ASAE. 46, 1539–1551.
  44. Wilson, C.R., Einberger, C.M., Jackson, R.L. and Mercer, R.B. 1992. Design of Ground‐Water Monitoring Networks Using the Monitoring Efficiency Model (MEMO). Groundwater. 30(6), 965-970.
  45. Wu, C., Wu, X., Qian, C. and Zhu, G. 2018. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China. Applied Geochemistry. 98, 404-417.
  46. Wu, J., Zheng, C. and Chien, C.C. 2005. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of contaminant Hydrology. 77, 41–65.
  47. Yakirevich, A., Pachepsky, Y.A., Gish, T.J., Guber, A.K., Kuznetsov, M.Y., Cady, R.E. Nicholson, T.J. 2013. Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology. 501(25), 13-24.
  48. Yang, X.S., Gandomi, A.H., Talatahari, S. and Alavi, A.H. 2012. Metaheuristics in
  49. Water. Geotechnical and Transport Engineering, First ed. Elsevier, Amsterdam.
  50. Yeh, M.S., Lin, Y.P. and Chang, L.C. 2006. Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology. 50, 101–121.