Zahra Jafari; Amir Salemi
Abstract
Introduction: Reaction of disinfection reagents, particularly chlorine, with natural organic material existing in raw water, results in production of a wide range of organic compounds, also known as disinfection byproducts. Despite their sever impacts on human health, only a tiny fraction of disinfection ...
Read More
Introduction: Reaction of disinfection reagents, particularly chlorine, with natural organic material existing in raw water, results in production of a wide range of organic compounds, also known as disinfection byproducts. Despite their sever impacts on human health, only a tiny fraction of disinfection byproducts is regulated and controlled.
Material and methods: In the present work, a novel solid-phase microextraction Arrow coupled with GC-MS has been developed, optimized and implemented for determination of seven non regulated disinfection byproducts; trichloroacetonitrile, dichloroacetonitrile, 1,1-dichloro-2-propanone, chloropicrin, bromochloroacetonitrile, 1,1,1-trichloro-2- propanone and dibromoacetonitrile. A central composite design was used to optimize the extraction parameters.
Results and discussion: The method was sensitive enough to detect traces of the target compounds, with LOD values of 0.4-20 ng L-1. Also, quantitative analysis was possible over a wide linear range of about four orders of magnitude (50 to 100000 ng L-1 with R2 values of more than 0.997) with reasonable precision (RSD% values of less than 21.6% at 50 ng L-1. relative recoveries were between 60 and 95 %.
Conclusion: The optimized technique was also successfully implemented for determination of the target compounds in ten drinking water samples and as result, most of them were observed in various concentration levels.