بررسی تغییرات ماهانه جزایر حرارتی شبانه شهرستان اصفهان در دو دهه اخیر با استفاده از فرآورده های چندزمانه سنجنده مودیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شهرسازی، دانشکده معماری و هنر، دانشگاه گیلان، رشت، ایران

2 گروه اقلیم شناسی، دانشکده ادبیات و علوم انسانی، دانشگاه سیدجمال الدین اسدآبادی، اسدآباد، ایران

3 گروه آب و هواشناسی، دانشکده علوم جغرافیایی و برنامه ریزی، دانشگاه اصفهان، اصفهان، ایران

4 گروه سنجش از دور، دانشکده مهندسی، دانشگاه خاوران، مشهد، ایران

چکیده

سابقه و هدف: در دهه­ های اخیر، هم­زمان با توسعه فیزیکی شهرها و افزایش جمعیت ناشی از مهاجرت، کاهش پوشش ­گیاهی، مصرف زیاد سوخت ­های فسیلی، انتشار گازهای گلخانه ­ای و استفاده از مصالح نامناسب در ساخت­ و­ساز شهری، پدیده جزایر حرارتی در کلان­ شهرهایی مانند شهرستان اصفهان اهمیت قابل توجهی پیدا کرده است که با استفاده از روش­ های نوین سنجش ­از دوری و ماهواره ­ای می­ توان با دقت بالا در زمان اندک، این پدیده را مورد پایش قرار داد. لذا هدف اصلی پژوهش حاضر، بررسی تغییرات ماهانه جزایر حرارتی شهرستان اصفهان با استفاده از سنجنده مودیس (MODIS)، ماهواره ترا (Terra) و روش تحلیل مؤلفه ­اصلی (PCA) است. با این تکنیک می ­توان زمان­ هایی که دمای سطح زمین و جزیره حرارتی افزایش بیشتری در شهرستان اصفهان دارد، شناسایی کرد.
مواد و روش­ ها: در این راستا، پژوهش حاضر در نظر دارد تغییرات ماهانه این پدیده را در شهرستان اصفهان طی بازه زمانی 20 ساله (از ژانویه 2000 تا دسامبر 2020 میلادی) مورد واکاوی قرار دهد. برای دستیابی به این منظور از داده ­های دمای سطح زمین (LST) که توسط سنجنده مودیس و ماهواره ترا استخراج شده است، بهره گرفته شد. همچنین با روش تحلیل مؤلفه­اصلی فصول و ماه­ هایی که بیشترین تأثیرگذاری را در روند رخداد جزایر حرارتی دارند، مورد شناسایی قرار گرفت و جهت تحلیل روند این پدیده نیز، از آزمون من-کندال و آزمون کلموگروف-اسمیرنوف استفاده گردید.
نتایج و بحث: یافته ­های پژوهش حاکی از این است که دامنه تغییرات شبانه دمای سطح زمین طی 20 سال اخیر در شهرستان اصفهان روندی افزایشی با نرخ 4 درصدی داشته است. هرچند که این روند در مراکز جمعیتی و شهری، کاملاً متفاوت از مناطق پیرامونی شهرستان اصفهان بوده است. از نظر پراکنش مکانی نیز، بیشترین میزان دمای شبانه سطح زمین در بخش جرقویه علیا بویژه روی تالاب گاو خونی و بخش مرکزی شهر اصفهان در نزدیکی به شهرک صنعتی سپیددشت، شهرک صنعتی ورزنه، شهرک صنعتی رامشه و تغییر کاربری اراضی کشاورزی به صنعتی و مسکونی و همچنین در منطقه شمال­غرب (شامل محمودآباد و شهر اصفهان) به دلیل افزایش گرمایش انسان­ساخت ناشی از افزایش مصرف سوخت­ های فسیلی، رشد واحدهای مسکونی، صنعتی و تجاری مشاهده شده است. کمترین دمای سطح زمین در قسمت شمالی شهرستان، قسمتهای از بخش کوهپایه، مرکزی، جلگه و بن رود واقع شده است. همچنین نتایج نشان داد که شدت جزیره گرمایی در زمستان بیش از تابستان است و شدیدترین زمان رخداد آن مربوط به ژانویه است و کمترین زمان وقوع آن در ماه دسامبر ثبت شده است. 
نتیجه ­گیری: به طور کلی؛ میانگین بلند مدت نمایه ­ی جزیره­ ی گرمایی شبانه نشان می ­دهد که فصل گرم سال موجب تضعیف جزیره گرمایی شبانه شده و دوره ­ی سردسال، موجب نیرومندتر شدن جزیره گرمایی شبانه می­شود. بخش­ های از جنوب شهرستان اصفهان  در طول شب به دلیل وسعت بالای اراضی بایر، کشاورزی و پوشش گیاهی، دمای سطحی کمتری دارند ولی در مناطق شرقی روی تالاب گاو خونی به علت ظرفیت حرارتی بالای آب، همجواری با مناطق شهری به ویژه شهر اصفهان و به دلیل نزدیکی شهرک­ های صنعتی و کارخانجات تولیدی، روند افزایشی دما و جزایر گرمایی مشهود است. به نظر می ­رسد شهرستان اصفهان نیز مانند اغلب شهرهای دنیا، یکپارچه تحت تأثیر تغییرات اقلیم جهانی قرار دارد اما بسته به موقعیت جغرافیایی و مکان­گزینی متمرکزی که صنایع در هر بخش از این استان دارد، دمای سطح زمین و روند رخداد جزایر حرارتی متفاوت است. افزایش شهرنشینی، مهاجرت­ پذیری، افزایش مصرف سوخت­ های فسیلی، کاهش پوشش گیاهی، تشدید خشک­سالی در سال­ های اخیر و تغییر کاربری­ ها نقش اساسی در افزایش رخداد این پدیده در شهرستان اصفهان دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Monthly changes of night heat islands analysis in Isfahan County in the last two decades using the multi-temporal products of the MODIS sensor

نویسندگان [English]

  • Mostafa Tahani Yazdly 1
  • Sayyed Mohammad Hosseini 2
  • Farahnaz Khoramabadi 3
  • Mohammad Mohtaram 4
1 Department of Urban Engineering, Faculty of Architecture and Art, University of Guilan, Rasht, Iran
2 Department of Climatology, Faculty of Literature and Humanities, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
3 Department of Climatology, Faculty of Geographical Sciences and Planning, University of Isfahan, Isfahan, Iran
4 Department of Remote Sensing, Faculty of Engineering, University of Khavaran, Mashhad, Iran
چکیده [English]

Introduction: In recent decades, along with the physical development of cities and population increase due to immigration, heat islands, which are mainly the result of human made activities, have gained significant importance. So, the reduction of vegetation cover, the high consumption of fossil fuels, the emission of greenhouse gases and the use of inappropriate materials in urban construction have created the microclimate of a heat island above the metropolis of the world. Finally, it causes an increase in the land surface temperature, atmospheric stability, persistence and stabilization of pollutants and an increase in respiratory diseases. Today, by using remote sensing methods and using digital satellite images, it is possible to examine the land surface temperature with high accuracy and in a short period using MODIS sensors and Terra satellite images. Therefore, the main objective of the current research was to analyze the temporal and spatial variations of heat islands of Isfahan using the principal component analysis method. With this technique, it is possible to identify the seasons and months when the land surface temperature and the heat island increased.
 Material and Methods: In this regard, the present research considered analyzing the temporal and spatial variations of this phenomenon in Isfahan during a period of 20 years (from 2000 to 2020 AD). To achieve this purpose, the land surface temperature (LST) data extracted by MODIS sensor and Terra satellite was used. These data are available for the whole world with a time resolution of 8 days and a spatial resolution of 1x1 km in a sinusoidal grid with dimensions of 1200x1200 km. Therefore, for Isfahan, 913 images were extracted from the MODIS sensor. Then, with the principal component analysis (PCA) method, the seasons and months that have the most influence on the occurrence of heat islands were identified and in order to analyze the trend of this phenomenon, the Mann-Kendall and the Kolmogorov-Smirnov tests were used.
Results and Discussion: The findings of the research indicated that the land surface temperature in the last 20 years in Isfahan had an increasing trend with a rate of 4%. However, this trend in the population and urban centers has been completely different from the surrounding areas of Isfahan. In terms of spatial distribution, the highest occurrence of heat islands has been registered in the eastern and southeastern parts (including Hassan Abad and Jolgeh) due to proximity to the hot deserts of Kavir-Lout, proximity to Sepiddasht, Varzaneh, Shahrak Ramsheh industrial towns and changes in the land use of agricultural to industrial and residential. also in the North-West region (including Mahmudabad and Isfahan city) due to the increase in man-made heating caused by the increase in the consumption of fossil fuels, the growth of residential, industrial and commercial units, temperature has risen. In addition, the results showed that the intensity of the heat island in winter is higher than in summer, and the most intense time of its occurrence was recorded in January and the least in November.
Conclusion: Isfahan is integrally affected by global climate conditions, but depending on the geographical location of each part of this province, the land surface temperature and the occurrence of heat islands are different, so that, eastern and central parts, adjacent to Kavir-Lout and close to industrial towns, have an increasing trend. Moreover, the southern parts have a decreasing rate of temperature and heat islands due to less urban population, larger agricultural lands and more vegetation. The increase in urbanization, migration, and the increase in fossil fuel consumption, the decrease in vegetation, the aggravation of drought, and the change in land use have a fundamental role in increasing the occurrence of this phenomenon.

کلیدواژه‌ها [English]

  • Modis Satellite
  • Heat Island
  • Principal Component Analysis
  • Mann-Kendall Test
  • Isfahan
Abedini, M., Qaleh, E., Aghazadeh, N. and Mohammadzadeh, M., 2021. Monitoring the surface temperature of the earth and investigating the relationship between land use and surface temperature using OLI and TM, (Case study: MeshginShahr city). Journal of Applied Research in Geographical Sciences. 67, 375-393. https://doi.org/10.52547/jgs.22.67.375
Afifi, M.I., 2016. Monitoring particulate matter using multi-spectral images of Modis satellite in the southwest of Iran. Geography Quarterly. 55, 184-194. https://rimag.ricest.ac.ir/en/Article/9111
Ahmadi, M., and Ahmadi, H., 2018. Monitoring of the night time land surface temperature in Iran based on output of the MODIS. GeoRes. 33 (1), 174-190. https://doi.org/10.29252/geores.33.1.174
Amorim, T., Dubreuil, V. and Amorim, A.T., 2021. Day and night surface and atmospheric heat islands in a continental and temperate tropical environment. Urban Climate. 38, 19-28. https://doi.org/10.1016/j.uclim.2021.100918
Arvin, A., 2021. Investigation of urban thermal Island based on information of urban meteorological stations. Geographical Planning of Space. 11(41), 81-94.
Chander-G., Markham, B.L. and Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007
Gartland, L., 2008. Heat Island. London: Earth scan.
Gedzelman, S.D., Austin, S., Cermak, R., and Stefano, N., 2003. Mesoscale aspects of the urban heat island around Newyork city. Theor Appl climatol. 75, 29-4. https://doi.org/10.1007/s00704-002-0724-2
Hajifathali, M., Faizi, M., and Dehghan, A., 2021. The relationship between air heat, average radiant heat and albedo in reducing heat islands in cities. Geography Quarterly. 71, 173-190. http://ensani.ir/file/download/article/1651302222-10550-1400-149
Halabian, A. H., Parvin, N., and Naqibzadeh, R., 2021. Analysis of spatio-temporal changes in the thermal patterns of Arak city by processing satellite images and GIS. Scientific-Research Quarterly of Geographical Information (Sephehr). 30(119), 121-138.  https://doi.org/10.22131/sepehr.2021.247885
Hashemi Darrhbadami, S., Darvishi Belorani, A., Alavi Panah, S. K., Maleki, M., and Bayat, R., 2018. Analysis of changes in the heat island of urban surfaces during the day and night using multi-temporal Modis sensor products (Case study: Tehran Metropolis). Applied Research Journal of Geographical Sciences. (52), 113-128. https://doi.org/10.29252/jgs.19.52.113
Iménez-Muñoz, J.C. and Sobrino, J., 2008. Split window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. Geoscience and Remote Sensing Letters. IEEE. 5(4), 806-809. https://doi.org/10.1109/LGRS.2008.2001636
Jolliffe, I.T., 2001. Principal Component Analysis, 2nd Edition, Springer.
Kargupta, H, Huang, W.Y, Sivakumar, K. and Johnson, E., 2001. Distributed Clustering Using
Collective Principal Component Analysis. Knowl. Inf. Syst. 3 (4), 422–448. https://redirect.cs.umbc.edu/~hillol/PUBS
Khurshiddost, A.M., 2004. Applied hydrology and meteorology, Yavariyan Publishing, Tabriz.
Landsberg, H. E., 1981. The urban climatic: Academic Press.
Lazzarini, M., Marpu, P.R. and Ghedira, H., 2013. Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment. 130, 136-152. https://doi.org/10.1016/j.rse.2012.11.007
Liu, L. and Zhang, Y., 2011. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing. 3(7), 1535-1552. https://doi.org/10.3390/rs3071535
Mann, H.B., 1945. Non-parametric tests against trend, Econometrica. 13,163-171. https://doi.org/10.2307/1907187
Mansourmoghadam, M., Rousta, I., Zamani, M.S. and Mokhtari, M.H., 2022. Study and prediction of land surface temperature changes in Yazd city: investigating the effect of proximity and land cover changes. Journal of Remote Sensing and Geographical Information System in Natural Resources. 45, 1-27. https://sanad.iau.ir/journal/girs/article_682083
MCST., 2006. MODIS Level 1B Product User’s Guide. NASA/Goddard Space Flight Center Greenbelt, MD20771,62.
Mohammadi, M. and Afifi, M.I., 2021. Investigating the phenomenon of urban heat islands using ASTER satellite images (Study area: Shiraz city). Geography and Environmental Studies Quarterly. 10(37), 21-44. https://www.sid.ir/paper/386693
Mojarrad, F., Naseriyeh, M. and Hashemi, S., 2018. Investigation of Periodic and Seasonal Variations of Urban Heat Island (UHI) at night and day by using Satellite Imagery in Kermanshah City. Journal of the Earth and Space Physics. 44(2), 479-494. 10.22059/JESPHYS.2018.247773.1006952
Mortazaviasal, S.K., Saidi, R. and Rezaei, M., 2021. The effect of land use on the spatial distribution of cool islands in Tehran. Quarterly Journal of Geographical Studies of Mountainous Regions. 2,50-31. Doi:10.52547/gsma.2.2.31
Nasir, M.J., Ahmad, W., Iqbal, J., Ahmad, B., Abdo, H.G., Hamdi, R. and Bateni, S.M., 2022. Effect of the Urban Land Use Dynamics on Land Surface Temperature: A Case Study of Kohat City in Pakistan for the Period 1998–2018. Earth Systems and Environment. 6(1), 237-248. https://doi.org/10.1007/s41748-022-00292-3
Rezaeirad, H. and Rafieyan, M., 2017. Estimating the spatial-temporal Changes in intensity of the heat island in Tehran Metropolitan by Using ASTER and Landsat8 Satellite Images. Regional Planning. 27, 47-60. 20.1001.1.22516735.1396.7.27.4.1
Safarrad, T., 2021. Analysis of temporal changes in the intensity of the nocturnal heat island in Tehran. Journal of Climate Change Research. 8, 55-66. 10.30488/CCR.2021.319317.1063
Shahmohamdi, P. and Cubasch, U., 2013. Conflict between Population and Urbanization Factors: Impact of Urban Heat Island on Energy Consumption. Balance. Journal of Civil Engineering and Architecture. 23, 16-2. https://www.mdpi.com/2673-4109/2/2/26
Taha, H., 2002. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and buildings. 25(2), 99 -103. https://doi.org/10.1016/S0378-7788(96)00999-1
Tahani Yazdli, M., Rousta, I. and Abdolazimi, H., 2023. Analyzing the Relationship between Temporal and Spatial Changes in Daily Surface Temperature and the Spatial Pattern of Land Cover Changes in the Direction of Environmental Sustainability(Case Study: Kashan city). Geography and Environmental Sustainability. 13(1), 1-20. 10.22126/GES.2022.8014.2551
Tariq, A., Mumtaz, F., Zeng, X., Baloch, M.Y.J. and Moazzam, M.F.U., 2022. Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using daytime and nighttime land surface temperatures MODIS and meteorological stations data. Remote Sensing Applications: Society and Environment. 27, 100-109. https://doi.org/10.1016/j.rsase.2022.100779
Tipping, M. and Bishop, M., 2008. Probabilistic principal component analysis. Technical
Report NCRG/97/010, Microsoft Research.
Tourki, M. and Masoodian, S.A., 2021. Analyzing the temporal and spatial behavior of the heat island of Mashhad metropolis. Journal of GIS and Remote Sensing. 4, 35-60. https://doi.org/10.52547/gisj.13.4.35
Umar, U.M. and Kumar, J.S., 2014. Spatial and temporal changes of urban heat island in Kano metropolis. Nigeria. Journal of Research in Engineering Science and Technology, 1(2). https://www.researchgate.net/publication/321475029
Valizadeh, K., Gholamnia, K., Ainali, G. and Mosavi, S.M., 2017. Estimation land surface temperature and extract heat islands using split window algorithm and multivariate regression analysis (Case Study of Zanjan). Research and Urban Planning. 30, 35-50. 20.1001.1.22285229.1396.8.30.3.9
Vidal. R.Y.M. and Sastry, S., 2005. Generalized principal component analysis, PAMI. 27,1–15. https://doi.org/10.1109/TPAMI.2005.244
Voogt, J.A. and Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote sensing of environment. 86 (3), 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
Widaman, K.F., 1999. Bias in Pattern Loadings Represented by Common Factor- Analysis and Component Analysis. Multivariate Behavioral Research. 25 (1), 89-95. https://doi.org/10.1207/s15327906mbr2501_11