ارزيابي مقاومت و بيش‌اندوزي سرب به وسيله گياه سلمه‎تره (chenopodium album L.) در خاك‌هاي آلوده به فلزات سنگين

نازلی علیپور, مهدی همایی, صفورا اسدی کپورچال, محبوبه مظهری

چکیده


مقاومت و جذب آلاينده‌ها به‎ویژه فلزات سنگين به‌ وسيله گياهان مختلف متفاوت است. چنان‎چه بتوان گياهان مقاومي يافت كه قادر باشند مقداري از آلودگي‌هاي موجود در آب و يا خاك را كاهش دهند مي‌توان از آن‌ها براي آلودگي‌زدايي منابع آلوده استفاده كرد. هدف از اين پژوهش بررسي توا‎نايي گياه شورپسند سلمه‎تره در استخراج گياهي سرب و تعيين زمان پالايش سرب از خاک‎هاي سطحي آلوده به وسيله اين گياه بود. بدين منظور آزمايشي در قالب طرح کاملاً تصادفي با شش تيمار شاهد، 150، 300، 600، 900 و 1200 ميلي‎گرم سرب در هر کيلوگرم خاک و چهار تکرار اجرا گرديد. پس از طي دوره رشد، گياهان برداشت و ميزان سرب در ريشه و اندام هوايي گياه اندازه‎گيري شد. نتايج نشان داد‎ که رابطه‌اي مثبت و غير خطي بين مقدار سرب تجمع يافته در ريشه و اندام هوايي با غلظت سرب خاک وجود دارد. بيشترين مقدار سرب تجمع يافته در ريشه و اندام هوايي به ترتيب 75/64 و 125/4 ميلي‎گرم بر کيلوگرم بود. بيشترين مقدار ماده خشک در يک سال در تيمار 600 ميلي‎گرم برکيلوگرم نزديک به 35 تن در هکتار به‌دست آمد و کمترين زمان پالايش هم در تيمار 600 ميلي‎گرم بر کيلوگرم و برابر با 9 سال بود که در سطح 5% از آلودگي سربي به‌دست آمد. بنابراين با توجه به امکان برداشت سلمه‎تره تا سه بار در سال، توان بالاي بيش‎اندوزي و توليد زيست توده فراوان، مي‌توان از این گیاه برای پالايش خاک‎هاي آلوده به سرب استفاده کرد.


واژگان کلیدی


استخراج گياهي، آلودگي خاك، عامل انتقال

تمام متن:

PDF

منابع و مآخذ مقاله


Asadi Kapourchal S O, Asadi Kapourchal S, Pazira E, Homaee M. Assessing radish (Raphanus sativus L.) potential for phytoremediation of Lead- contaminated soils resulting from air pollution. Soil plant and environment Journal; 2009; 55(5): 202-206.

Asadi Kapourchal S, eisazadeh S, Homaee M. Phytoremediation of cadmium polluted soils resulting from use of phosphorus fertilizers. Proceeding of European Biotechnology Thematic Network Association congress. Istanbul, Turkey, 2011; S 37.

Raskin I, Smith R D, Salt D E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology; 1997; 8 (2): 221-226.

Blaylock M J, Salt D E, Dushenkov S, Zakharova O, Gushsman C, Kapulink Y, Ensley B D, Raskin I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology; 1997; 31: 860-865.

Glick B R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances; 2003; 21(5): 383-393.

Kumar P B A N, Dushenkov V, Motto H, Raskin I. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils. Environmental Science and Technology; 1995; 29:1232-1238.

Raskin I, Kumar N P B A, Dushenkov S, Salt D E. Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology; 1994; 5 (3):285-290.

Salt D E, Blaylock M, Kumar N P B A, Dushenkov V, Ensley B D, Chet I, Raskin I. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology; 1995;13:468-474.

Zhuang P, Yang Q W, Wang H B, Shu W S. Phytoextraction of heavy metals by eight plant species in the field. Water Air and Soil Pollution; 2007;184:235–2.

Sahmurova A, Celik M, Allahverediyev S. Determination of the accumulator plants in Kucukcmece lake (Istanbul). African Journal of Biotechnology; 2010;9(39):6564-6551.

Halim M, Conte P, Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere; 2003; 52(1):265-275.

Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology, and phytochemistry. Biorecovery; 1989;1:81-126.

Henry JR. An overview of the phytoremediation of lead and mercury. U.S. environmental protection agency office of solid waste and emergency response technology innovation office. Washington, D.C; 2000.

Eid M A. Halophytic plants for phytoremediation of heavy metals contaminated soil. The Journal of American Science; 2011;7(8):377-382.

Dalalian M, Homaee M. Simulating of Phytoremediation Time of Cadmium and Copper Spiked Soils by Salvia sclarea.Water and Soil Science Journal; 2011;20(4):129-141. [In Persian]

Davari M, Homaee M. Modeling phytoremediation of Ni and Cd from contaminated soils using macroscopic transpiration reduction functions. Science and Technology of Agriculture and Natural Resources, water and soil science Journal; 2010;14(52):75-84. [In Persian]

Davari M, Homaee M. A new yield multiplicative model for simultaneous phytoextraction of Ni and Cd from contaminated soils. Water and Soil Journal; 2012;25(6):1333-1343. [In Persian]

Jafarnejadi A R, Homaee M, Sayyad Gh. A. Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination Journal; 2011;20(1):93-99.

Mohamadipour F, Asadi Kapourchal S. Assessing land cress potential for phytoextraction of cadmium from Cdcontaminated soils. Water and Soil Resources Conservation; 2012;(2)2:25-35. [In Persian]

Cariny T. The re-use of contaminated land. John Wiley and Sons Ltd. Pub., USA. 1995.

Khodaverdiloo H, Homaee M. Modeling Phytoremediation of Soils Polluted with Cadmium and Lead. Science and Technology of Agriculture and Natural Resources, water and soil science Journal; 2008;11(42):417-426. [In Persian]

Mousavi S M, Ahmadabadi Z, Bahmanyar M A. Investigation the Hyper-accumulative Potential of Creeping Wheat Grass (Agropyronrepens L.) and Berseem Clover (Trifolum Alexanderium L.) in Adsorption of Heavy Metals from Treated Soil with Sewage Sludge. Water and wastewater; 2015;In Press.

Greman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil; 2001; 235:105-114.

Gupta P K. Soil, Plant, Water and Fertilizer Analysis. Agrobios, New Dehli, India; 2000.

Schnoor J L. Phytoremediation. GWRTAC (Ground-Water Remediation Technologies Analysis Center) Technology Evaluation Report TE-98-01; 1997. P.150.

Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh D P, Barman S C. Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecological Engineering; 2013; 61:491-495.

Sun Y, Zhou Q, Diao Ch. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology; 2008; 99:1103-1110.

Huang J W, Cunningham S D. Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist; 1996;145:75-84.

Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wet land plant species thriving in critical contaminated. sites in china. Environmental Pollution; 2004;132 (1):29-40.


ارجاعات

  • در حال حاضر ارجاعی نیست.