مدل سازی توزیع پتانسیل گونه Juniperus excelsa با استفاده از عامل های محیطی در کوهستان البرز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران

2 گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 بخش تحقیقات جنگل، موسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

سابقه و هدف:
مدل ­سازی توزیع گونه‌ای، روشی رایج برای درک روابط میان یک گونه و محیط اطرافش است و برای پیش‌بینی تغییرات در توزیع همگام با تغییرات محیطی مورد استفاده قرار می‌گیرد. تحقیق­ های گسترده‌ای در منطقه ­های مختلف دنیا براساس این مدل‌ها انجام گرفته است. در این مطالعه، توزیع پتانسیل گونه ارس1، گونه سنجه و یکی از مهم ترین گونه‌های درختی جنگل‌های ایران و تورانی، در کوهستان البرز با استفاده از 38 پارامتر محیطی با استفاده از مدل‌های توزیع گونه‌ای  Domain و رگرسیون لجستیک2 مورد بررسی قرار گرفته است.
 مواد و روش‌ها:
منطقه مورد مطالعه، شامل بخش‌هایی از کوهستان البرز است که در شمال ایران واقع شده و دارای مساحتی برابر با 14656 کیلومترمربع می‌باشد. در تحقیق حاضر، برای تعیین سایت‌های نمونه‌برداری، از روش تصادفی طبقه‌بندی شده استفاده گردید و در نهایت تعداد 390 سایت رخداد (240 سایت حضور و 150 سایت عدم حضور) گونه Juniperus excelsa در مقیاس 30 ثانیه (کمابیش معادل 1کیلومتر* 1 کیلومتر) به‌عنوان ورودی مدل مورد مطالعه قرار گرفت. همچنین، تعداد 38 پارامتر محیطی به ­عنوان متغیر پیش‌بینی‌کننده برای اجرای دو مدل Domain و Logistic Regression مد نظر قرار گرفت.
نتایج و بحث:
نتایج نشان داد که مدل Domain کارایی بالایی برای پیش‌بینی رویشگاه Juniperus excelsa با 0.97 AUC=، Kappa=0.730 و TSS=0.91 داراست. براساس نتایج به ­دست آمده، منطقه ­های با کمترین پتانسیل حضور Juniperus excelsa 5665.95 کیلومتر مربع، پتانسیل متوسط 2033.1 کیلومتر مربع، پتانسیل خوب، 38/3076 کیلومترمربع، پتانسیل بسیار خوب 42/3063 کیلومترمربع و پتانسیل عالی 817.29 از سطح منطقه را به خود اختصاص داده‌اند. نتایج به‌دست آمده از اجرای مدل رگرسیون لجستیک گویای آن است که 5084.37 کیلومتر مربع از منطقه مورد مطالعه در طبقه پتانسیل ضعیف، 2539.35 کیلومتر مربع پتانسیل متوسط، 1410.21 پتانسیل خوب و 1104.84 کیلومترمربع پتانسیل بسیار خوب و 37/4517 کیلومترمربع پتانسیل عالی قرار گرفته است. همچنین نتایج نشان داد که شرایط مطلوب رویشگاهی گونه Juniperus excelsa در منطقه­ هایی است که اختلاف حداکثر و حداقل درجه حرارت سالانه بین 15.5 تا 13 درجه سانتی‌گراد، بارش فصلی 90 - 64 میلی‌متر، بارش سردترین فصل سال 60 - 35 میلی‌متر، ارتفاع از سطح دریا، 3100 - 1800 متر، در جهات جغرافیایی جنوب، جنوب شرق و شرق، شیب 30 - 10 درصد است، همچنین احتمال حضور گونه در منطقه­ هایی که کمترین فاصله را با خط برف و آبراهه دارند و روی صخره‌هایی از جنس آهک شیلی و آهک دولومیتی افزایش می‌یابد. همچنین، در بخش‌هایی از منطقه که گونه Juniperus excelsa مشاهده می‌شود، سنجه NDVI بین 0.38 تا 0.2 تغییر می‌نماید. نتایج ارزیابی عملکرد مدل‌ها، نشان داد که مدل Domain دارای کارایی بالاتری در پیش‌بینی رویشگاه مطلوب گونه Juniperus excelsa نسبت به مدل رگرسیون لجستیک در منطقه مورد مطالعه می‌باشد که با نتایج Hernandez et al. (2006) و Tsoar et al. (2007) که عملکرد بالای این مدل را نشان دادند، تطابق دارد.
نتیجه‌گیری:
با بکارگیری مدل توزیع گونه‌ای می‌توان برنامه مدیریتی مناسب برای بخش‌های مختلف رویشگاه را بیان نمود. منطقه ­های با پتانسیل ضعیف، به ­طور معمول رویشگاه حدی گونه هستند و جمعیت‌ها در این منطقه ­ها آسیب­پذیرتر از دیگر منطقه ­ها هستند؛ منطقه­ های با پتانسیل بسیار خوب و عالی مناسب مدیریت به ­صورت ذخیره‌گاه جنگلی یا منطقه حفاظت شده هستند. برای جنگل کاری و توسعه و احیای اکوتیپ بومی، عرصه‌هایی در مناطق با پتانسیل خوب تا عالی که بدون پوشش درختی قابل توجه هستند، مناسب می­ باشند. تحقیق حاضر نشان داد که مدل Domian با وجود آنکه تنها از داده‌های حضور استفاده می‌کند، می‌تواند روش مفیدی جهت پیش‌بینی رویشگاه‌های مطلوب گونه Juniperus excelsa در کوهستان البرز باشد. بنابراین می‌توان اظهار نمود که مدل‌های توزیع گونه‌‌ای، با دقت قبل قبولی کارایی لازم را در برآورد پراکنش گونه داشته و می‌توانند جهت بیان راهکارهای حفاظتی توسط متخصصان مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the potential distribution of Juniperus excelsa using environmental factors in Alborz Mountains

نویسندگان [English]

  • Samira Sadat Fatemi Azarkhavarani 1
  • Mohammad Rahimi 1
  • Mostafa Tarkesh 2
  • Hooman Ravanbakhsh 3
1 Department of Combat Desertification, Faculty of desert studies, Semnan University, Semnan, Iran
2 Department of Range & Watershead Management, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, Iran
3 Department of Forest Researches, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

Introduction:
Species distribution modeling is a common method for understanding the relationships between a species and its environment and is used to predict the changes in distribution due to environmental changes. A lot of research has been done around the world based on these models. In this study, the optimal habitat of Juniperus excelsa, an indicator species, and the most important tree species in Irano-Turanian forests in the Alborz Mountains have been investigated using 38 environmental parameters and domain and logistic regression models.
Material and methods:
The study area consists of parts of the Alborz Mountains located in the north of Iran with an area of 14656 km2. In the present study, a stratified random sampling method was used to determine the sampling sites. Finally, 390 occurrence sites (240 presence sites and 150 absentee sites) of J. excelsa at a 30-second scale (approximately 1 km×1 km) as the input model was studied. Also, 38 environmental parameters were considered as predictive variables for implementing two models of the domain and logistic regression.
Results and discussion:
The results showed that the domain model had a high performance for predicting the habitat of J. excelsa with AUC =0.97, Kappa =0.730, and TSS = 0.91. Based on the results, the areas with the lowest potential for the presence of J. excelsa were 5665.95 km2, the moderate potential was 2033.1 km2, the good potential was 3076.38 km2, the very good potential was 3063.42 km2, and the high potential was 817.29 km2. The results obtained from the implementation of the logistic regression model indicated that 5084.37 km2 of the studied area was in the class of least potential, 2539.35 km2 had moderate potential, 1410.21 km2 had good potential, 1104. 84 km2 had very good potential, and 4517.37 km2 had high potential. Also, the results showed that the suitable habitats for J. excelsa were regions with a mean diurnal range of 13 °C and 15.5 °C, annual precipitation of 120-220 mm, precipitation of 64-90 mm, precipitation of coldest quarter of 35-60 mm, the altitude from the sea level of 3100-1800 m, and a slope of 30-10% in the southern, southeast, and east directions. Also, the probability of species occurrence was more in areas near the snow and water line as well as on calcic rocks. Also, in the habitat of J. excelsa the NDVI index varied between 0.38 and 0.20. The results of the performance evaluation of the models showed that the domain model had higher performance in predicting the suitable habitat of J. excelsa than the logistic regression model in the study area.
Conclusion:
Species distribution models can provide a suitable management plan for different parts of the habitat. Areas with low potential of suitable habitat are usually partial habitats and populations in these areas are more vulnerable than the others, whereas areas with very good potential are excellent for a protected area. Areas with good to the excellent potential that do not have significant tree cover are suitable for forestry and native ecosystem restoration. The present study showed that the domain model, despite using only presence data, can be a useful method for predicting the suitable habitat of J. excelsa in the Alborz Mountains. Therefore, it can be stated that species distribution models, with acceptable accuracy, have enough performance in the evaluation of species distribution and can be used to execute conservation strategies.

کلیدواژه‌ها [English]

  • Domain model
  • Environmental data
  • Irano-Turanian forests
  • Logistic regression
  1. Accadia, C., Mariani, S., Casaioli, M., Lavaqnini, A. and Speranza, A., 2005. Veriï‌cation of precipitation forecasts from two limited-area models over Italy and comparison with ECMWF forecasts using a resampling technique. Weather and Forecasting. 20, 276– 300.
  2. Ahmed, M., Husain, T., Sheikh, A.H., Hussain, S.S. and Siddiqui, M.F., 2006. Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pakistan Journal of Botany. 38(2), 361.
  3. Allouche, O., Tsoar, A. and Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology. 43(6), 1223-1232.
  4. Austin, M.P. and Meyers, J.A., 1996. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecology and Management. 85(1-3), 95-106.
  5. Carpenter, G., Gillison, A.N. and Winter, J., 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation. 2(6), 667-680.
  6. CAWRC -The Centre for Australian Weather and Climate Research, 2015. Forecast veriï‌cation: issues, methods and FAQ. Read 13. 5. 2015. Available online at: http://www.cawcr.gov. au/projects/veriï‌cation/.
  7. Cohen, J., 1960. A coefï‌cient of agreement of nominal scales. Educational and Psychological Measurement. 20, 37– 46.
  8. Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y. and Wang, Z.G., 2014. The predictive performance and stability of six species distribution models. PloS One. 9(11), e112764.
  9. Elith, J. and Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics. 40, 677–697.
  10. Franklin, J., 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge Univ. Press. In press
  11. Garsia, C.I., 2013. Predicted effects of climate change on the distribution of the invasive grass dichanthium annulatum. MSc. Thesis, University of Texas-Pan American, USA.
  12. Gaston, A. and Garcia-Viñas, J.I., 2011. Modelling species distributions with penalized logistic regressions: A comparison with maximum entropy models. Ecological Modelling. 222(13), 2037-2041.
  13. Graham, C.H., Elith, J., Hijmans, R.J., Guisan, A., Townsend Peterson, A., Loiselle, B.A. and NCEAS Predicting Species Distributions Working Group., 2008. The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology. 45, 239–247.
  14. Green, R.E., Osborne, P.E. and Sears, E.J., 1994. The distribution of passerine birds in hedgerows during the breeding season in relation to characteristics of the hedgerow and adjacent farmland. Journal of Applied Ecology. 677-692.
  15. Guisan, A. and Thuiller W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters. 8, 993–1009.
  16. Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling. 135, 147-186.
  17. Hernandez, P.A., Graham, CH., Master, L.L. and Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 29(5), 773-785.
  18. Hijmans, R.J, Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25(15), 1965-1978.
  19. Jafarian Jeloudar, Z., 2008. Spatial modeling of Rangeland vegetation using ecological indicators and satellite data. Ph.D. Thesis, Faculty of Natural Resources, University of Tehran, Iran.
  20. Kaky, E. and Gilbert, F., 2016. Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants. Journal of Arid Environments. 135, 140-146.
  21. Khan, M., Khan, A.U. and Gilani, A.H., 2012. Pharmacological explanation for the medicinal use of Juniperus excelsa in hyperactive gastrointestinal and respiratory disorders. Journal of Natural Medicines. 66(2), 292-301.
  22. Khan, S.W. and Khatoon, S., 2007. Ethno botanical studies on useful trees and shrubs of Haramosh and Bugrote valleys in Gilgit Notheren areas of Pakistan. Pakistan Journal of Botany. 39(3), 699-710.
  23. Landis, J.R. and Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometric. 33, 159-174.
  24. Matevski, V., Čarni, A., Kostadinovski, M., Marinšek, A., Mucina, L., Paušič, A. and Šilc, U., 2010. Notes on phytosociology of Juniperus excelsa in Macedonia (southern Balkan Peninsula). Hacquetia. 9(1), 161-165.
  25. McCullagh, P. and Nelder, J.A., 1989. Generalized Linear Models (Monographs on statistics and applied probability 37). Chapman Hall Google Scholar, London.
  26. Miller, J., 2010. Species Distribution Modeling. Geography Compass. 4(6), 490–509.
  27. Momeni Moghadam, T., Sagheb –Talebi, K., Akbarinia, M., Akhavan, R. and Hosseini, S.M., 2012. Impact of some physiographic and edaphic factors on quantitative and qualitative characteristics of Juniper forest (case study: Layen Region-Khorasan). Iranian Journal of Forest. 4(2),143-156.
  28. Pěknicova, J. and Berchova-Bimova, K., 2016. Application of species distribution models for protected areas threatened by invasive plants. Journal for Nature Conservation. 34, 1-7.
  29. Sahragard, H.P. and Ajorlo, M., 2018. A comparison of logistic regression and maximum entropy for distribution modeling of range plant species (a case study in rangelands of western Taftan, southeastern Iran). Turkish Journal of Botany. 42(1), 28-37.
  30. Park, S., Hamm, S.Y., Jeon, H.T. and Kim, J., 2017. Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability. 9(7), 1157.
  31. Pourmajidian, M.R. and Moradi, M., 2009. Investigation on the site and silvicultural properties of Juniperus excelsa in natural forests of Ilan in Qazvin province. Iranian Journal of Forest and Poplar Research. 17(3), 475-487.
  32. Prates-Clark, C.D.C., Saatchi, S.S. and Agosti, D., 2008. Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data. Ecological Modelling. 211(3), 309-323.
  33. Priti, H., Aravind, N.A., Shaanker, R.U. and Ravikanth, G., 2016. Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecological Engineering. 89, 14-23.
  34. Ravanbakhsh, H. and Moshki, A., 2016. The influence of environmental variables on distribution patterns of Irano-Turanian forests in Alborz Mountains, Iran. Journal of Mountain Science. 13(8), 1375-1386.
  35. Ravanbakhsh, H., Hamzehe, B., Etemad, V., Marvie Mohadjer, M.R. and Assadi, M., 2016. Phytosociology of Juniperus excelsa M. Bieb. forests in Alborz mountain range in the north of Iran. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 150(5), 987-1000.
  36. Ravanbakhsh, H., Marvi Mohajer, M.R., Asadi, M., Zobeiri, M. and Etemad, V., 2013. Classification of Juniperus excelsa M. Bieb forests vegetation and its analysis of relationship with environmental variables. Forest and Wood Product (Iranian Journal of Natural Resources). 66(3), 277-292.
  37. Razanamahandry, L.C., Andrianisa, H.A., Karoui, H., Podgorski, J. and Yacouba, H., 2018. Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. Catena. 162, 40-50.
  38. Sabeti, H., 2008. Forests, trees and shrubs of Iran. Fifth Edition, Yazd University Press, Iran.
  39. Sagheb-Talebi, K., Pourhashemi, M. and Sajedi, T., 2014. Forests of Iran: A Treasure from the Past, a Hope for the Future. Springer, Germany.
  40. Saki, M., Tarkesh, M., Bassiri, M. and Vahabii, M.R., 2013. Application of logistic regression tree model in determining habitat distribution of Astragalus verus. Ijae. 1(2), 27-38.
  41. Sarangzai, A.M., Ahmed, M., Ahmed, A., Tareen, L. and Jan, S.U., 2012. The ecology and dynamics of Juniperus excelsa forest in Balochistan-Pakistan. Pakistan Journal of Botany. 44(5), 1617-1625.
  42. Sass-Klaassen, U., Leuschner, H.H., Buerkert, A. and Helle, G., 2007. Tree-ring analysis of Juniperus excelsa from the northern Oman Mountains. TRACE Dendrosymposium. 99-108.
  43. Stampoulidis, A. and Milios, E., 2010. Height structure analysis of pure Juniperus excelsa M. bieb. stands in Prespa national park in Greece. Forestry. 16(2), 40.
  44. Stehman, S., 1996. Estimating the kappa coefficient and its variance under stratified random sampling. Photogrammetric Engineering and Remote Sensing. 62(4), 401-407.
  45. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857), 1285-1293.
  46. Tarkesh, M. and Jetschke, G., 2012. Comparison of six correlative models in predictive vegetation mapping on a local scale. Environmental Ecology. 19(3), 437-457.
  47. Tobena, M., Prieto, R., Machete, M. and A. Silva, M., 2016. Modeling the potential distribution and richness of Cetaceans in the Azores from fisheries observer program data. Frontiers in Marine Science .3, 202.
  48. Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. and Kadmon, R., 2007. A comparative evaluation of presence‐only methods for modelling species distribution. Diversity and Distributions. 13(4), 397-405.
  49. Ward, D.F., 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions. 9(6), 723-735.
  50. Warren, R., VanDerWal, J., Price, J., Welbergen, J.A., Atkinson, I. and Ramirez-Villegas, J., 2013. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change. 3(7), 678–82.
  51. Wilson, P.D., 2011. Distance‐based methods for the analysis of maps produced by species distribution models. Methods in Ecology and Evolution. 2(6), 623-633.
  52. Yu, J., Wang, C., Wan, J., Han, S., Wang, Q. and Nie, S., 2014. A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change. Forest Ecology and Management. 327, 48-54.
  53. Zare Chahouki, M., Abbasi, M. and Azarnivand, H., 2014. Spatial distribution modeling for Agropyron intermedium and Stipa barbata species habitat using binary logistic regression (case study: rangeland of Taleghan miany). PEC. 2(4), 47-60.
  54. Zare Chahouki, M.A., Jafari, M., Azarnivand, H., Moghaddam, M.R., Farahpour, M. and Shafizadeh NasrAbadi, M., 2007. Application of logistic regression to study the relationship between presence of plant species and environmental factors. Pajouhesh & Sazandegi Journal. 76, 136.
  55. Zohary, M., 1973. Geobotanical Foundations of the Middle East. Vol. 2, Gustav Fisher Verlag, Stuttgart, Germany.